版权声明:本文为博主原创文章,未经博主允许不得转载

本文是基于hadoop 2.7.1,以及kafka 0.11.0.0。kafka-connect是以单节点模式运行,即standalone。

一. 首先,先对kafka和kafka connect做一个简单的介绍

  kafka:Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。比较直观的解释就是其有一个生产者(producer)和一个消费者(consumer)。可以将kafka想象成一个数据容器,生产者负责发送数据到这个容器中,而消费者从容器中取出数据,在将数据做处理,如存储到hdfs。

  kafka connect:Kafka Connect是一种用于在Kafka和其他系统之间可扩展的、可靠的流式传输数据的工具。它使得能够快速定义将大量数据集合移入和移出Kafka的连接器变得简单。即适合批量数据导入导出操作。

二. 下面将介绍如何用kafka connect将数据写入到hdfs中。包括在这个过程中可能碰到的一些问题说明。

首先启动kafka-connect:


bin/connect-standalone.sh config/connect-standalone.properties config/connector1.properties
这个命令后面两个参数,
  第一个是指定启动的模式,有分布式和单节点两种,这里是单节点。kafka自带,放于config目录下。
  第二个参数指向描述connector的属性的文件,可以有多个,这里只有一个connector用来写入到hdfs。需要自己创建。 接下来看看connector1.properties的内容,
name="test"    #该connector的名字
#将自己按connect接口规范编写的代码打包后放在kafka/libs目录下,再根据项目结构引用对应connector
connector.class=hdfs.HdfsSinkConnector
#Task是导入导出的具体实现,这里是指定多少个task来并行运行导入导出作业,由多线程实现。由于hdfs中一个文件每次只能又一个文件操作,所以这里只能是1
tasks.max=1 
#指定从哪个topic读取数据,这些其实是用来在connector或者task的代码中读取的。
topics=test
#指定key以那种方式转换,需和Producer发送方指定的序列化方式一致
key.converter=org.apache.kafka.connect.converters.ByteArrayConverter
value.converter=org.apache.kafka.connect.json.JsonConverter #同上
hdfs.url=hdfs://127.0.0.1:9000  #hdfs的url路径,在Connector中会被读取
hdfs.path=/test/file  #hdfs文件路径,同样Connector中被读取 key.converter.schemas.enable=true  #稍后介绍,可以true也可以false,影响传输格式
value.converter.schemas.enable=true  #稍后介绍,可以true也可以false

三. 接下来看代码,connect主要是导入导出两个概念,导入是source,导出时Sink。这里只使用Sink,不过Source和Sink的实现其实基本相同。
实现Sink其实不难,实现对应的接口,即SinkConnector和SinkTask两个接口,再打包放到kafka/libs目录下即可。其中SinkConnector只有一个,而Task可以有多
先是Connector
public class HdfsSinkConnector extends SinkConnector {
//这两项为配置hdfs的urlh和路径的配置项,需要在connector1.properties中指定
public static final String HDFS_URL = "hdfs.url";
public static final String HDFS_PATH = "hdfs.path";
private static final ConfigDef CONFIG_DEF = new ConfigDef()
.define(HDFS_URL, ConfigDef.Type.STRING, ConfigDef.Importance.HIGH, "hdfs url")
.define(HDFS_PATH, ConfigDef.Type.STRING, ConfigDef.Importance.HIGH, "hdfs path");
private String hdfsUrl;
private String hdfsPath;
@Override
public String version() {
return AppInfoParser.getVersion();
}
  //start方法会再初始的时候执行一次,这里主要用于配置
@Override
public void start(Map<String, String> props) {
hdfsUrl = props.get(HDFS_URL);
hdfsPath = props.get(HDFS_PATH);
}
  //这里指定了Task的类
@Override
public Class<? extends Task> taskClass() {
return HdfsSinkTask.class;
}
  //用于配置Task的config,这些都是会在Task中用到
@Override
public List<Map<String, String>> taskConfigs(int maxTasks) {
ArrayList<Map<String, String>> configs = new ArrayList<>();
for (int i = 0; i < maxTasks; i++) {
Map<String, String> config = new HashMap<>();
if (hdfsUrl != null)
config.put(HDFS_URL, hdfsUrl);
if (hdfsPath != null)
config.put(HDFS_PATH, hdfsPath);
configs.add(config);
}
return configs;
}
  //关闭时的操作,一般是关闭资源。
@Override
public void stop() {
// Nothing to do since FileStreamSinkConnector has no background monitoring.
} @Override
public ConfigDef config() {
return CONFIG_DEF;
} }

接下来是Task

public class HdfsSinkTask extends SinkTask {
private static final Logger log = LoggerFactory.getLogger(HdfsSinkTask.class); private String filename; public static String hdfsUrl;
public static String hdfsPath;
private Configuration conf;
private FSDataOutputStream os;
private FileSystem hdfs; public HdfsSinkTask(){ } @Override
public String version() {
return new HdfsSinkConnector().version();
}
  //Task开始会执行的代码,可能有多个Task,所以每个Task都会执行一次
@Override
public void start(Map<String, String> props) {
hdfsUrl = props.get(HdfsSinkConnector.HDFS_URL);
hdfsPath = props.get(HdfsSinkConnector.HDFS_PATH);
System.out.println("----------------------------------- start--------------------------------"); conf = new Configuration();
conf.set("fs.defaultFS", hdfsUrl);
//这两个是与hdfs append相关的设置
conf.setBoolean("dfs.support.append", true);
conf.set("dfs.client.block.write.replace-datanode-on-failure.policy", "NEVER");
try{
hdfs = FileSystem.get(conf);
// connector.hdfs = new Path(HDFSPATH).getFileSystem(conf);
os = hdfs.append(new Path(hdfsPath));
}catch (IOException e){
System.out.println(e.toString());
} }
  //核心操作,put就是将数据从kafka中取出,存放到其他地方去
@Override
public void put(Collection<SinkRecord> sinkRecords) {
for (SinkRecord record : sinkRecords) {
log.trace("Writing line to {}: {}", logFilename(), record.value());
try{
System.out.println("write info------------------------" + record.value().toString() + "-----------------");
os.write((record.value().toString()).getBytes("UTF-8"));
os.hsync();
}catch(Exception e){
System.out.print(e.toString());
}
}
} @Override
public void flush(Map<TopicPartition, OffsetAndMetadata> offsets) {
try{
os.hsync();
}catch (Exception e){
System.out.print(e.toString());
} }
  //同样是结束时候所执行的代码,这里用于关闭hdfs资源
@Override
public void stop() {
try {
os.close();
}catch(IOException e){
System.out.println(e.toString());
}
} private String logFilename() {
return filename == null ? "stdout" : filename;
} }
这里重点提一下,因为在connector1.propertise中设置了key.converter=org.apache.kafka.connect.converters.ByteArrayConverter,所以不能用命令行形式的
producer发送数据,而是要用程序的方式,并且在producer总也要设置key的序列化形式为org.apache.kafka.common.serialization.ByteArraySerializer。
编码完成,先用idea以开发程序与依赖包分离的形式打包成jar包,然后将程序对应的jar包(一般就是“项目名.jar”)放到kafka/libs目录下面,这样就能被找到。

四. 接下来对这个过程的问题做一个汇总。
1.在connector1.properties中的key.converter.schemas.enable=false和value.converter.schemas.enable=false的问题。
这个选项默认在connect-standalone.properties中是true的,这个时候发送给topic的Json格式是需要使用avro格式,具体情况可以百度,这里给出一个样例。
{
"schema": {
"type": "struct",
"fields": [{
"type": "int32",
"optional": true,
"field": "c1"
}, {
"type": "string",
"optional": true,
"field": "c2"
}, {
"type": "int64",
"optional": false,
"name": "org.apache.kafka.connect.data.Timestamp",
"version": 1,
"field": "create_ts"
}, {
"type": "int64",
"optional": false,
"name": "org.apache.kafka.connect.data.Timestamp",
"version": 1,
"field": "update_ts"
}],
"optional": false,
"name": "foobar"
},
"payload": {
"c1": 10000,
"c2": "bar",
"create_ts": 1501834166000,
"update_ts": 1501834166000
}
}

主要就是schema和payload这两个,不按照这个格式会报错如下


org.apache.kafka.connect.errors.DataException: JsonConverter with schemas.enable requires "schema" and "payload" fields and may not contain additional fields. If you are trying to deserialize plain JSON data, set schemas.enable=false in your converter configuration.

   at org.apache.kafka.connect.json.JsonConverter.toConnectData(JsonConverter.java:308)

如果想发送普通的json格式而不是avro格式的话,很简单key.converter.schemas.enable和value.converter.schemas.enable设置为false就行。这样就能发送普通的json格式数据。

2.在启动的过程中出现各种各样的java.lang.ClassNotFoundException。

在启动connector的时候,一开始总是会报各个各样的ClassNotFoundException,不是这个包就是那个包,查找问题一直说要么缺少包要么是包冲突。这个是什么原因呢?

其实归根结底还是依赖冲突的问题,因为kafka程序自定义的类加载器加载类的目录是在kafka/libs中,而写到hdfs需要hadoop的包。

我一开始的做法是将hadoop下的包路径添加到CLASSPATH中,这样子问题就来了,因为kafka和hadoop的依赖包是有冲突的,比如hadoop是guava-11.0.2.jar,而kafka是guava-20.0.jar,两个jar包版本不同,而我们是在kafka程序中调用hdfs,所以当jar包冲突时应该优先调用kafka的。但是注意kafka用的是程序自定义的类加载器,其优先级是低于CLASSPATH路径下的类的,就是说加载类时会优先加载CLASSPATH下的类。这样子就有问题了。

我的解决方案时将kafka和hadoop加载的jar包路径都添加到CLASSPATH中,并且kafka的路径写在hadoop前面,这样就可以启动connector成功。

---
推荐阅读:
大数据存储的进化史 --从 RAID 到 Hdfs
贝叶斯分类算法实例 --根据姓名推测男女
从分治算法到 MapReduce

												

使用kafka connect,将数据批量写到hdfs完整过程的更多相关文章

  1. 【转】reduce端缓存数据过多出现FGC,导致reduce生成的数据无法写到hdfs

    转自  http://blog.csdn.net/bigdatahappy/article/details/41726389 转这个目的,是因为该贴子中调优思路不错,值得学习 搜索推荐有一个job,1 ...

  2. kafka产生的数据通过Flume存到HDFS中

    试验目标: 把kafka的生产者发出的数据流经由Flume放到HDFS来存储. 试验环境: java:1.8 kafka:2.11 flume:1.6 hadoop:2.8.5 试验流程: 1.进入z ...

  3. 打造实时数据集成平台——DataPipeline基于Kafka Connect的应用实践

    导读:传统ETL方案让企业难以承受数据集成之重,基于Kafka Connect构建的新型实时数据集成平台被寄予厚望. 在4月21日的Kafka Beijing Meetup第四场活动上,DataPip ...

  4. Kafka connect快速构建数据ETL通道

    摘要: 作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 业余时间调研了一下Kafka connect的配置和使用,记录一些自己的理解和心得,欢迎 ...

  5. 基于Kafka Connect框架DataPipeline可以更好地解决哪些企业数据集成难题?

    DataPipeline已经完成了很多优化和提升工作,可以很好地解决当前企业数据集成面临的很多核心难题. 1. 任务的独立性与全局性. 从Kafka设计之初,就遵从从源端到目的的解耦性.下游可以有很多 ...

  6. Kafka connect in practice(3): distributed mode mysql binlog ->kafka->hive

    In the previous post Kafka connect in practice(1): standalone, I have introduced about the basics of ...

  7. 以Kafka Connect作为实时数据集成平台的基础架构有什么优势?

    Kafka Connect是一种用于在Kafka和其他系统之间可扩展的.可靠的流式传输数据的工具,可以更快捷和简单地将大量数据集合移入和移出Kafka的连接器.Kafka Connect为DataPi ...

  8. Kafka Connect使用入门-Mysql数据导入到ElasticSearch

    1.Kafka Connect Connect是Kafka的一部分,它为在Kafka和外部存储系统之间移动数据提供了一种可靠且伸缩的方式,它为连接器插件提供了一组API和一个运行时-Connect负责 ...

  9. SQL Server CDC配合Kafka Connect监听数据变化

    写在前面 好久没更新Blog了,从CRUD Boy转型大数据开发,拉宽了不少的知识面,从今年年初开始筹备.组建.招兵买马,到现在稳定开搞中,期间踏过无数的火坑,也许除了这篇还很写上三四篇. 进入主题, ...

随机推荐

  1. openresty 中mime.types 文件缺失问题,无法展示图片

    看技术群有人问这个:"图片不展示了,直接下载了,怎么设置nginx",之前刚开始学习nginx时遇到过,然后 使用 openresty+lua在做网关时遇到过,这里还是记录下吧. ...

  2. logback KafkaAppender 写入Kafka队列,集中日志输出.

    为了减少应用服务器对磁盘的读写,以及可以集中日志在一台机器上,方便使用ELK收集日志信息,所以考虑做一个jar包,让应用集中输出日志 网上搜了一圈,只发现有人写了个程序在github 地址:https ...

  3. mysql无法启动的结果问题解决

    mac 上homebrew 安装的mysql,已经用了很长时间都没什么问题,今天 ERROR! The server quit without updating PID file (/usr/loca ...

  4. Apache+PHP+Mysql中文配置

    一.安装Apache2 1.输入sudo apt-get install apache2下载安装apache2 2.输入Y回车确认 3.安装成功 Apache安装完成后,默认的网站根目录是" ...

  5. Django使用模板后无法找到静态资源文件

    Django使用模板后无法找到静态资源文件 环境配置 Django版本1.11 python版本3.6.2 前言 在编写Django网站的时候,在涉及模板方面,一些简单的例子都没有问题,但这些例子都有 ...

  6. AutoMapper 使用心得

    在很久之前就已经有了解到AutoMapper 这一个组件了,但是却一直不明白这个东西要怎么使用,是用来干什么的.经过几经周折之后,看了资料大概5.6次吧,总算理解其中的用途和原理(请原谅我理解能力太差 ...

  7. 关系网络理论︱细讲中介中心性(Betweeness Centrality)

    关系网络在我认为都是一种很简单暴力地能挖掘人群特征关系的一种方式,特别今天去听了一场关于AI与金融领域的结合,里面提到了拓扑分析其实就是关系网络的解释.我在之前的文章( R语言︱SNA-社会关系网络- ...

  8. [2015-06-10 20:53:50 - Android SDK] Error when loading the SDK:

    1.错误描述 [2015-06-10 20:53:50 - Android SDK] Error when loading the SDK: Error: Error parsing D:\Andro ...

  9. IOS开发之XCode学习013:步进器和分栏控件

    此文学习来源为:http://study.163.com/course/introduction/1002858003.htm 此工程文件实现功能:  1.定义UIStepper和UISegmente ...

  10. Tomcat下使用Druid配置JNDI数据源

    com.alibaba.druid.pool.DruidDataSourceFactory实现了javax.naming.spi.ObjectFactory,可以作为JNDI数据源来配置. 一.下载D ...