1.Pandas的函数应用

1.apply 和 applymap

1. 可直接使用NumPy的函数

  • 示例代码:
# Numpy ufunc 函数
df = pd.DataFrame(np.random.randn(5,4) - 1)
print(df)

print(np.abs(df))
  • 运行结果:
          0         1         2         3
0 -0.062413  0.844813 -1.853721 -1.980717
1 -0.539628 -1.975173 -0.856597 -2.612406
2 -1.277081 -1.088457 -0.152189  0.530325
3 -1.356578 -1.996441  0.368822 -2.211478
4 -0.562777  0.518648 -2.007223  0.059411

          0         1         2         3
0  0.062413  0.844813  1.853721  1.980717
1  0.539628  1.975173  0.856597  2.612406
2  1.277081  1.088457  0.152189  0.530325
3  1.356578  1.996441  0.368822  2.211478
4  0.562777  0.518648  2.007223  0.059411

2. 通过apply将函数应用到列或行上

  • 示例代码:
# 使用apply应用行或列数据
#f = lambda x : x.max()
print(df.apply(lambda x : x.max()))
  • 运行结果:
0   -0.062413
1    0.844813
2    0.368822
3    0.530325
dtype: float64

注意指定轴的方向,默认axis=0,方向是列

  • 示例代码:
# 指定轴方向,axis=1,方向是行
print(df.apply(lambda x : x.max(), axis=1))
  • 运行结果:
0    0.844813
1   -0.539628
2    0.530325
3    0.368822
4    0.518648
dtype: float64

3. 通过applymap将函数应用到每个数据上

  • 示例代码:
# 使用applymap应用到每个数据
f2 = lambda x : '%.2f' % x
print(df.applymap(f2))
  • 运行结果:
       0      1      2      3
0  -0.06   0.84  -1.85  -1.98
1  -0.54  -1.98  -0.86  -2.61
2  -1.28  -1.09  -0.15   0.53
3  -1.36  -2.00   0.37  -2.21
4  -0.56   0.52  -2.01   0.06

2.排序

1. 索引排序

sort_index()

排序默认使用升序排序,ascending=False 为降序排序

  • 示例代码:
# Series
s4 = pd.Series(range(10, 15), index = np.random.randint(5, size=5))
print(s4)

# 索引排序
s4.sort_index() # 0 0 1 3 3
print(s4.sort_index())
  • 运行结果:
0    10
3    11
1    12
3    13
0    14
dtype: int64

0    10
0    14
1    12
3    11
3    13
dtype: int64

2.对DataFrame操作时注意轴方向

  • 示例代码:
# DataFrame
df4 = pd.DataFrame(np.random.randn(3, 5),
                   index=np.random.randint(3, size=3),
                   columns=np.random.randint(5, size=5))
print(df4)

df4_isort = df4.sort_index(axis=1, ascending=False)
print(df4_isort) # 4 2 1 1 0
  • 运行结果:
          1         4         0         1         2
2 -0.416686 -0.161256  0.088802 -0.004294  1.164138
1 -0.671914  0.531256  0.303222 -0.509493 -0.342573
1  1.988321 -0.466987  2.787891 -1.105912  0.889082

          4         2         1         1         0
2 -0.161256  1.164138 -0.416686 -0.004294  0.088802
1  0.531256 -0.342573 -0.671914 -0.509493  0.303222
1 -0.466987  0.889082  1.988321 -1.105912  2.787891

3. 按值排序

sort_values(by='column name')

根据某个唯一的列名进行排序,如果有其他相同列名则报错。

  • 示例代码:
# 按值排序,by=0,如果没有0,也会报错,重新运行一下,直到有0就不报错了
df4_vsort = df4.sort_values(by=0, ascending=False)
print(df4_vsort)
  • 运行结果:
          1         4         0         1         2
1  1.988321 -0.466987  2.787891 -1.105912  0.889082
1 -0.671914  0.531256  0.303222 -0.509493 -0.342573
2 -0.416686 -0.161256  0.088802 -0.004294  1.164138

3.处理缺失数据

  • 示例代码:
df_data = pd.DataFrame([np.random.randn(3), [1., 2., np.nan],
                       [np.nan, 4., np.nan], [1., 2., 3.]])
print(df_data.head())
  • 运行结果:
          0         1         2
0 -0.281885 -0.786572  0.487126
1  1.000000  2.000000       NaN
2       NaN  4.000000       NaN
3  1.000000  2.000000  3.000000

1. 判断是否存在缺失值:isnull()

  • 示例代码:
# isnull
print(df_data.isnull())
  • 运行结果:
       0      1      2
0  False  False  False
1  False  False   True
2   True  False   True
3  False  False  False

2. 丢弃缺失数据:dropna()

根据axis轴方向,丢弃包含NaN的行或列。

  • 示例代码:
# dropna
print(df_data.dropna())

print(df_data.dropna(axis=1))
  • 运行结果:
          0         1         2
0 -0.281885 -0.786572  0.487126
3  1.000000  2.000000  3.000000

          1
0 -0.786572
1  2.000000
2  4.000000
3  2.000000

3. 填充缺失数据:fillna()

  • 示例代码:
# fillna
print(df_data.fillna(-100.))
  • 运行结果:
            0         1           2
0   -0.281885 -0.786572    0.487126
1    1.000000  2.000000 -100.000000
2 -100.000000  4.000000 -100.000000
3    1.000000  2.000000    3.000000

2.层级索引(hierarchical indexing)

下面创建一个Series, 在输入索引Index时,输入了由两个子list组成的list,第一个子list是外层索引,第二个list是内层索引。

  • 示例代码:
import pandas as pd
import numpy as np

ser_obj = pd.Series(np.random.randn(12),index=[
                ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c', 'd', 'd', 'd'],
                [0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2]
            ])
print(ser_obj)
  • 运行结果:
a  0    0.099174
   1   -0.310414
   2   -0.558047
b  0    1.742445
   1    1.152924
   2   -0.725332
c  0   -0.150638
   1    0.251660
   2    0.063387
d  0    1.080605
   1    0.567547
   2   -0.154148
dtype: float64

1.MultiIndex索引对象

  • 打印这个Series的索引类型,显示是MultiIndex

  • 直接将索引打印出来,可以看到有lavels,和labels两个信息。lavels表示两个层级中分别有那些标签,labels是每个位置分别是什么标签。

  • 示例代码:

print(type(ser_obj.index))
print(ser_obj.index)
  • 运行结果:
<class 'pandas.indexes.multi.MultiIndex'>
MultiIndex(levels=[['a', 'b', 'c', 'd'], [0, 1, 2]],
           labels=[[0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2]])

2.选取子集

根据索引获取数据。因为现在有两层索引,当通过外层索引获取数据的时候,可以直接利用外层索引的标签来获取。

当要通过内层索引获取数据的时候,在list中传入两个元素,前者是表示要选取的外层索引,后者表示要选取的内层索引。

1. 外层选取:

ser_obj['outer_label']
  • 示例代码:
# 外层选取
print(ser_obj['c'])
  • 运行结果:
0   -1.362096
1    1.558091
2   -0.452313
dtype: float64
  • 内层选取:
ser_obj[:, 'inner_label']
  • 示例代码:
# 内层选取
print(ser_obj[:, 2])
  • 运行结果:
a    0.826662
b    0.015426
c   -0.452313
d   -0.051063
dtype: float64

常用于分组操作、透视表的生成等

3.交换分层顺序

1. swaplevel()

  • .swaplevel( )交换内层与外层索引。
  • 示例代码:
print(ser_obj.swaplevel())
  • 运行结果:
0  a    0.099174
1  a   -0.310414
2  a   -0.558047
0  b    1.742445
1  b    1.152924
2  b   -0.725332
0  c   -0.150638
1  c    0.251660
2  c    0.063387
0  d    1.080605
1  d    0.567547
2  d   -0.154148
dtype: float64

4.交换并排序分层 sortlevel()

  • .sortlevel( )先对外层索引进行排序,再对内层索引进行排序,默认是升序。
  • 示例代码:
# 交换并排序分层
print(ser_obj.swaplevel().sortlevel())
  • 运行结果:
0  a    0.099174
   b    1.742445
   c   -0.150638
   d    1.080605
1  a   -0.310414
   b    1.152924
   c    0.251660
   d    0.567547
2  a   -0.558047
   b   -0.725332
   c    0.063387
   d   -0.154148
dtype: float64

3.Pandas统计计算和描述

  • 示例代码:
import numpy as np
import pandas as pd

df_obj = pd.DataFrame(np.random.randn(5,4), columns = ['a', 'b', 'c', 'd'])
print(df_obj)
  • 运行结果:
          a         b         c         d
0  1.469682  1.948965  1.373124 -0.564129
1 -1.466670 -0.494591  0.467787 -2.007771
2  1.368750  0.532142  0.487862 -1.130825
3 -0.758540 -0.479684  1.239135  1.073077
4 -0.007470  0.997034  2.669219  0.742070

1.常用的统计计算

sum, mean, max, min…

axis=0 按列统计,axis=1按行统计

skipna 排除缺失值, 默认为True

  • 示例代码:
df_obj.sum()

df_obj.max()

df_obj.min(axis=1, skipna=False)
  • 运行结果:
a    0.605751
b    2.503866
c    6.237127
d   -1.887578
dtype: float64

a    1.469682
b    1.948965
c    2.669219
d    1.073077
dtype: float64

0   -0.564129
1   -2.007771
2   -1.130825
3   -0.758540
4   -0.007470
dtype: float64

2.常用的统计描述

describe 产生多个统计数据

  • 示例代码:
print(df_obj.describe())
  • 运行结果:
              a         b         c         d
count  5.000000  5.000000  5.000000  5.000000
mean   0.180305  0.106488  0.244978  0.178046
std    0.641945  0.454340  1.064356  1.144416
min   -0.677175 -0.490278 -1.164928 -1.574556
25%   -0.064069 -0.182920 -0.464013 -0.089962
50%    0.231722  0.127846  0.355859  0.190482
75%    0.318854  0.463377  1.169750  0.983663
max    1.092195  0.614413  1.328220  1.380601

3.常用的统计描述方法:



Pandas的函数应用、层级索引、统计计算的更多相关文章

  1. Pandas统计计算和描述

    Pandas统计计算和描述 示例代码: import numpy as np import pandas as pd df_obj = pd.DataFrame(np.random.randn(5,4 ...

  2. pandas层级索引1

    层级索引(hierarchical indexing) 下面创建一个Series, 在输入索引Index时,输入了由两个子list组成的list,第一个子list是外层索引,第二个list是内层索引. ...

  3. pandas层级索引

    层级索引(hierarchical indexing) 下面创建一个Series, 在输入索引Index时,输入了由两个子list组成的list,第一个子list是外层索引,第二个list是内层索引. ...

  4. Python数据科学手册-Pandas:层级索引

    一维数据 和 二维数据 分别使用Series 和 DataFrame 对象存储. 多维数据:数据索引 超过一俩个 键. Pandas提供了Panel 和 Panel4D对象 解决三维数据和四维数据. ...

  5. pandas 常用函数整理

    pandas常用函数整理,作为个人笔记. 仅标记函数大概用途做索引用,具体使用方式请参照pandas官方技术文档. 约定 from pandas import Series, DataFrame im ...

  6. 【转载】pandas常用函数

    原文链接:https://www.cnblogs.com/rexyan/p/7975707.html 一.import语句 import pandas as pd import numpy as np ...

  7. pandas(3):索引Index/MultiIndex

    目录 一.索引概念 二.创建索引 ①导入数据时指定索引 ②导入数据后指定索引df.set_index() 三.常用的索引属性 四.常用索引方法 五.索引重置reset_index() 六.修改索引值( ...

  8. pandas基础(2)_多重索引

    1:多重索引的构造 >>> #下面显示构造pd.MultiIndex >>> df1=DataFrame(np.random.randint(0,150,size= ...

  9. 数据可视化基础专题(六):Pandas基础(五) 索引和数据选择器(查找)

    1.序言 如何切片,切块,以及通常获取和设置pandas对象的子集 2.索引的不同选择 对象选择已经有许多用户请求的添加,以支持更明确的基于位置的索引.Pandas现在支持三种类型的多轴索引. .lo ...

随机推荐

  1. Activity之间传递大数据问题

    Android开发人员都知道,Intent适用于在不同的Activity之间传递数据,包括参数.字符串.以及序列化的对象等.但是笔者所做的项目用到了使用Intent 传递Bitmap图片对象,图片的数 ...

  2. mybatis源码之StatementHandler

    /** * @author Clinton Begin */ public interface StatementHandler { Statement prepare(Connection conn ...

  3. mybatis源码之MapperMethod

    /** * @author Clinton Begin * @author Eduardo Macarron * @author Lasse Voss */ //这个类是整个代理机制的核心类,对Sql ...

  4. OpenCV——颜色运算

    #ifndef PS_ALGORITHM_H_INCLUDED #define PS_ALGORITHM_H_INCLUDED #include <iostream> #include & ...

  5. cocos2d-x 控制台输出日志

    在2dx中用CCLog输出日志,但是在vs的控制台中由于信息很多,很难发现.可以用下面方法,会重新启动一个黑色的控制台来输出日志 修改main.c文件,如下: #include "main. ...

  6. obj-c编程15[Cocoa实例02]:KVC和KVO的实际运用

    我们在第16和第17篇中分别介绍了obj-c的KVC与KVO特性,当时举的例子比较fun,太抽象,貌似和实际不沾边哦.那么下面我们就用一个实际中的例子来看看KVC与KVO是如何运用的吧. 该例中用到了 ...

  7. Angular v6 正式发布

    Angular 6 正式发布 Angular 6 已经正式发布了!这个主要版本并不关注于底层的框架,更多地关注于工具链,以及使 Angular 在未来更容易快速推进. 作为发布的一部分,我们同步了主要 ...

  8. 详谈linux中压缩

    1.压 缩 的 用 途 和 技 术 1.1 为什么需要压缩: ①你是否有过文件档案太大,导致无法以正常的email方式发送出去(很多email都有容量大约25MB每封信的限制啊!)? ②你是否有过要备 ...

  9. SAE提供服务分析

    这个分析列表主要关注两个问题,服务能做什么,移植实现难度. AppConfig: 这个东西主要面向SAE本身的一些配置选项,移植时放弃这个东西,所以就不谈难度了Counter :这个东西提供某个操作的 ...

  10. Spring Cache 笔记

    @(Java ThirdParty)[Spring Cache] Spring Cache Abstraction 简介 Spring Cache提供了对底层缓存使用的抽象,通过注解的方式使用缓存,减 ...