[LeetCode] Ones and Zeroes 一和零
In the computer world, use restricted resource you have to generate maximum benefit is what we always want to pursue.
For now, suppose you are a dominator of m 0s
and n 1s
respectively. On the other hand, there is an array with strings consisting of only 0s
and 1s
.
Now your task is to find the maximum number of strings that you can form with given m 0s
and n 1s
. Each 0
and 1
can be used at most once.
Note:
- The given numbers of
0s
and1s
will both not exceed100
- The size of given string array won't exceed
600
.
Example 1:
Input: Array = {"10", "0001", "111001", "1", "0"}, m = 5, n = 3
Output: 4 Explanation: This are totally 4 strings can be formed by the using of 5 0s and 3 1s, which are “10,”0001”,”1”,”0”
Example 2:
Input: Array = {"10", "0", "1"}, m = 1, n = 1
Output: 2 Explanation: You could form "10", but then you'd have nothing left. Better form "0" and "1".
这道题是一道典型的应用DP来解的题,如果我们看到这种求总数,而不是列出所有情况的题,十有八九都是用DP来解,重中之重就是在于找出递推式。如果你第一反应没有想到用DP来做,想得是用贪心算法来做,比如先给字符串数组排个序,让长度小的字符串在前面,然后遍历每个字符串,遇到0或者1就将对应的m和n的值减小,这种方法在有的时候是不对的,比如对于{"11", "01", "10"},m=2,n=2这个例子,我们将遍历完“11”的时候,把1用完了,那么对于后面两个字符串就没法处理了,而其实正确的答案是应该组成后面两个字符串才对。所以我们需要建立一个二维的DP数组,其中dp[i][j]表示有i个0和j个1时能组成的最多字符串的个数,而对于当前遍历到的字符串,我们统计出其中0和1的个数为zeros和ones,然后dp[i - zeros][j - ones]表示当前的i和j减去zeros和ones之前能拼成字符串的个数,那么加上当前的zeros和ones就是当前dp[i][j]可以达到的个数,我们跟其原有数值对比取较大值即可,所以递推式如下:
dp[i][j] = max(dp[i][j], dp[i - zeros][j - ones] + 1);
class Solution {
public:
int findMaxForm(vector<string>& strs, int m, int n) {
vector<vector<int>> dp(m + , vector<int>(n + , ));
for (string str : strs) {
int zeros = , ones = ;
for (char c : str) (c == '') ? ++zeros : ++ones;
for (int i = m; i >= zeros; --i) {
for (int j = n; j >= ones; --j) {
dp[i][j] = max(dp[i][j], dp[i - zeros][j - ones] + );
}
}
}
return dp[m][n];
}
};
类似题目:
参考资料:
https://discuss.leetcode.com/topic/71438/c-dp-solution-with-comments
https://discuss.leetcode.com/topic/71417/java-iterative-dp-solution-o-mn-space
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Ones and Zeroes 一和零的更多相关文章
- [LeetCode] Set Matrix Zeroes 矩阵赋零
Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place. click ...
- LeetCode 283. Move Zeroes (移动零)
Given an array nums, write a function to move all 0's to the end of it while maintaining the relativ ...
- LeetCode Factorial Trailing Zeroes (阶乘后缀零)
题意:如标题 思路:其他文章已经写过,参考其他. class Solution { public: int trailingZeroes(int n) { <? n/: n/+trailingZ ...
- [Leetcode] set matrix zeroes 矩阵置零
Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place. click ...
- [CareerCup] 1.7 Set Matrix Zeroes 矩阵赋零
1.7 Write an algorithm such that if an element in an MxN matrix is 0, its entire row and column are ...
- 每日一道 LeetCode (41):阶乘后的零
每天 3 分钟,走上算法的逆袭之路. 前文合集 每日一道 LeetCode 前文合集 代码仓库 GitHub: https://github.com/meteor1993/LeetCode Gitee ...
- 【python】Leetcode每日一题-矩阵置零
[python]Leetcode每日一题-矩阵置零 [题目描述] 给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 .请使用 原地 算法. 进阶: 一个直观的解 ...
- [LeetCode] Preimage Size of Factorial Zeroes Function 阶乘零的原像个数函数
Let f(x) be the number of zeroes at the end of x!. (Recall that x! = 1 * 2 * 3 * ... * x, and by con ...
- [LeetCode] Factorial Trailing Zeroes 求阶乘末尾零的个数
Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...
随机推荐
- OCP考点实战演练02-日常维护篇
本系列宗旨:真正掌握OCP考试中所考察的技能,坚决不做Paper OCP! 实验环境:RHEL 6.4 + Oracle 11.2.0.4 OCP考点实战演练02-日常维护篇 1.数据库体系结构和AS ...
- SIHA环境修改主机名实施步骤
目 录 1 实施需求 2 修改主机名 2.1 停止HAS服务 2.2 修改主机名 3 重新配置服务 3.1 使用root用户重新配置CSS & OHAS服务 3.2 设置cssd自动启动属性 ...
- SQL Server SQL性能优化之--通过拆分SQL提高执行效率,以及性能高低背后的原因
复杂SQL拆分优化 拆分SQL是性能优化一种非常有效的方法之一, 具体就是将复杂的SQL按照一定的逻辑逐步分解成简单的SQL,借助临时表,最后执行一个等价的逻辑,已达到高效执行的目的 一直想写一遍通过 ...
- cookie保存中文登录账号获取时乱码问题
登录成功后写入cookie的代码 Response.Cookies["account"].Value = account;//"管理员" Response.Co ...
- Xcode7.1环境下上架iOS App到AppStore 流程① (Part 一)
前言部分 之前App要上架遇到些问题到网上搜上架教程发现都是一些老的版本的教程 ,目前iTunesConnect 都已经迭代好几个版本了和之前的 界面风格还是有很大的差别的,后面自己折腾了好久才终于把 ...
- 分布式任务&分布式锁(li)
目前系统中存在批量审批.批量授权等各个操作,批量操作中可能因为处理机器.线程不同,造成刷新缓存丢失授权等信息,如批量审批同一用户权限多个权限申请后,流程平台并发的发送多个http请求到acl不同服务器 ...
- 后端Java工程师常用JavaScript_DOM
JavaScript [1]事件 ①用户操作网页或者浏览器所发生的交互行为称为事件.比如:点击按钮,最小化窗口,修改文本框内容等. ②JS为我们定义许多浏览器中的事件.比如:单击(onclick).双 ...
- android 自定义控件——(五)按钮点击变色
----------------------------------按钮点击变色(源代码下有属性解释)------------------------------------------------- ...
- Android InputType详解
android:inputType 如果设置android:inputType = "number",则默认弹出的输入键盘为数字键盘,且输入的内容只能为数字. InputType文 ...
- block为什么用copy以及如何解决循环引用
在完成项目期间,不可避免的会使用到block,因为block有着比delegate和notification可读性更高,而且看起来代码也会很简洁.于是在目前的项目中大量的使用block. 之前给大家介 ...