【BZOJ4872】分手是祝愿(动态规划,数学期望)
【BZOJ4872】分手是祝愿(动态规划,数学期望)
题面
题解
对于一个状态,如何求解当前的最短步数?
从大到小枚举,每次把最大的没有关掉的灯关掉
暴力枚举因数关就好
假设我们知道了当前至少要关\(tot\)次
如果一个灯被动两次以上是没有任何意义的
所以,相当于,要动的灯只有\(tot\)个
其他的是没有任何意义的
所以,题面可以变为:
现在有\(tot\)个\(1\),\(n-tot\)个\(0\)
每次随机选择一个数将其异或\(1\)
求最终变为\(0\)的期望
我们现在考虑一下
设\(f[x]\)为剩下\(x\)个\(1\)的期望
并且我们知道了所有的值,
那么,我们不难推出:
\]
也就是
\]
同时,我们有边界:
\(f[x]=x(x\leq K)\)
\(f[n]=f[n-1]+1\)
如果考虑把\(f[n]\)带入到\(f[n-1]\)的式子中
我们可以得到只有\(f[n-1],f[n-2]\)之间的关系式
如此递推下去就可以推出\(f[K+1]\)和\(f[K]\)的关系式
这样就是常数项了
回朔带回去就可以求解
时间复杂度\(O(nlogn)\)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 120000
#define MOD 100003
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int tot,n,K;
int a[MAX],ans[MAX];
int inv[MAX];
int DFS(int x,int ss)
{
if(x<=K)return ans[x]=x;
ss=(1ll*n*inv[x]%MOD+1ll*ss*(n-x)%MOD*inv[x]%MOD)%MOD;
return ans[x]=(DFS(x-1,ss)+ss)%MOD;
}
int main()
{
n=read();K=read();
for(int i=1;i<=n;++i)a[i]=read();
for(int i=n;i;--i)
if(a[i])
{
for(int j=1;j*j<=i;++j)
if(i%j==0)
{
a[j]^=1;
if(j*j!=i)a[i/j]^=1;
}
++tot;
}
if(tot<=K)
{
for(int i=1;i<=n;++i)tot=1ll*tot*i%MOD;
printf("%d\n",tot);
return 0;
}
for(int i=1;i<=n;++i)inv[i]=fpow(i,MOD-2);
DFS(n,1);
for(int i=1;i<=n;++i)ans[tot]=1ll*ans[tot]*i%MOD;
printf("%d\n",ans[tot]);
return 0;
}
【BZOJ4872】分手是祝愿(动态规划,数学期望)的更多相关文章
- BZOJ4872: [Shoi2017]分手是祝愿【概率期望DP】【思维好题】
Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...
- [bzoj4872]分手是祝愿
Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...
- Codeforces 839C Journey - 树形动态规划 - 数学期望
There are n cities and n - 1 roads in the Seven Kingdoms, each road connects two cities and we can r ...
- 【BZOJ4872】[Shoi2017]分手是祝愿 数学+期望DP
[BZOJ4872][Shoi2017]分手是祝愿 Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n ...
- [BZOJ4872][六省联考2017]分手是祝愿(期望DP)
4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 516 Solved: 342[Submit][Statu ...
- bzoj 4872: [Shoi2017]分手是祝愿 [期望DP]
4872: [Shoi2017]分手是祝愿 题意:n个灯开关游戏,按i后i的约数都改变状态.随机选择一个灯,如果当前最优策略\(\le k\)直接用最优策略.问期望步数\(\cdot n! \mod ...
- 【BZOJ2134】单位错选(数学期望,动态规划)
[BZOJ2134]单位错选(数学期望,动态规划) 题面 BZOJ 题解 单独考虑相邻的两道题目的概率就好了 没了呀.. #include<iostream> #include<cs ...
- 【BZOJ1415】【NOI2005】聪聪和可可(动态规划,数学期望)
[BZOJ1415][NOI2005]聪聪和可可(动态规划,数学期望) 题面 BZOJ 题解 先预处理出当可可在某个点,聪聪在某个点时 聪聪会往哪里走 然后记忆化搜索一下就好了 #include< ...
- 【Luogu1291】百事世界杯之旅(动态规划,数学期望)
[Luogu1291]百事世界杯之旅(动态规划,数学期望) 题面 洛谷 题解 设\(f[i]\)表示已经集齐了\(i\)个名字的期望 现在有两种方法: 先说我自己的: \[f[i]=f[i-1]+1+ ...
随机推荐
- 嵌入式linux系统的构建
前期工作:a.配置好tftp服务器:在嵌入式的童年中有介绍 b.开发板可以pc,linux 三者可以互相ping通 c.配置好nfs服务器:同样在嵌入式的童年中有介绍 一.嵌入式linux内核的制作( ...
- javascript 回到顶部 动画效果
上代码: <!DOCTYPE html> <html> <head> <meta content="测试demo" name=" ...
- ionic2 +Angular 使用自定义图标
结合阿里巴巴矢量图标库实现在ionic2开发中使用自定义图标. step1:在阿里巴巴图标管理中新建项目,并添加自己选中的图标到购物车: step2:将购物车中的图标"添加至项目" ...
- iOS 应用开发,用户密码存储技术--KeyChain
文/清雪飘香(简书作者)原文链接:http://www.jianshu.com/p/c41525172aee著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”. 这次的Xcode 事件,让我 ...
- springmvc log4j 配置
web.xml 增加 <context-param> <param-name>log4jConfigLocation</param-name> <param- ...
- linux下lampp(xampp)安装memcached扩展
原理:根据自己的lampp中的php版本,编译memcache时,引用对应下载的php版本,并安装后的php_config来生成memcache.so文件,再将这个so文件放置到lamppp对应位置, ...
- Java经典编程题50道之四十七
读取7个数(1~50)的整数值,每读取一个值,程序打印出该值个数的*. public class Example47 { public static void main(String[] arg ...
- C# Swagger 生成接口文档
一直听说Swagger是做Web API文档的好工具,这次手里暂时没什么事,类体验下它的强大之处.下面是使用Swashbuckle.net 给asp.net web API添加文档的简要步骤. 参考地 ...
- STL源码剖析之序列式容器
最近由于找工作需要,准备深入学习一下STL源码,我看的是侯捷所著的<STL源码剖析>.之所以看这本书主要是由于我过去曾经接触过一些台湾人,我一直觉得台湾人非常不错(这里不涉及任何政治,仅限 ...
- MongoDB 搭建可复制群集
一.概述 MongoDB复制群集支持节点故障自动切换,最小配置应包含3个节点,正常情况下应该至少包含两个数据节点,第三个节点可以是数据节点也可以是仲裁节点.仲裁节点的作用是当出现偶数节点导致无法仲裁的 ...