1.多进程实现TCP服务端并发

1.之前我们学习了一个服务端对应一个客户端的操作,但是我们无法实现一个服务端对应多个客户端的操作。因此我们需要在pycharm的右上角点击倒三角,选择Edit Configurations,我们便可进行多客户端操作。
客户端代码:
import socket client = socket.socket()
client.connect(('127.0.0.1', 8080)) while True:
client.send(b'hello world')
data = client.recv(1024)
print(data)
服务端:
import socket sever = socket.socket()
sever.bind(('127.0.0.1', 8080))
sever.listen(5) while True:
sock, addr = sever.accept()
while True:
data = sock.recv(1024)
print(data.decode('utf8'))
sock.send(data.upper())


======

======

"""
但是执行此操作就会发现第一个客户端有内容,后面的客户端都没有内容。因此单进程无法实现上述效果,我们必须使用多进程来实现上述并发的效果
"""
服务端:
import socket
from multiprocessing import Process def get_sever():
server = socket.socket()
server.bind(('127.0.0.1', 8080))
server.listen(5)
return server def get_talk(sock):
while True:
data = sock.recv(1024)
print(data.decode('utf8'))
sock.send(data.upper()) if __name__ == '__main__':
server = get_sever()
while True:
sock, addr = server.accept()
p = Process(target=get_talk, args=(sock,))
p.start()
'''每新增一个客户端就会新增一个人进程,相当于雇了服务员,每新增一个客户端就会新雇一名服务员''' 客户端:
import socket client = socket.socket()
client.connect(('127.0.0.1', 8080)) while True:
client.send(b'hello world')
data = client.recv(1024)
print(data)

2.互斥锁代码实操

1.互斥锁主要用于抢票等操作,高并发的情况下多个用户同事抢一张票,而最终只有一个用户抢票成功,每一个用户相当于新开一个进程。按照以往思维我们只要有一个用户抢票成功,那么文件余票数量就会被修改,现在执行上述操作:
代码:
import random
from multiprocessing import Process
import json
import time def search():
with open(r'data.json', 'r', encoding='utf8') as f:
data = json.load(f)
print(f'目前余票{data.get("ticket_num")}') def buys(name):
# 查票
with open(r'data.json', 'r', encoding='utf8') as f:
data = json.load(f)
# 模拟网络延迟
time.sleep(random.randint(1,3))
if data.get('ticket_num') > 0:
with open(r'data.json', 'w', encoding='utf8') as f:
data['ticket_num'] -= 1
json.dump(data, f)
print(f'{name}购票成功')
else:
print('余票不足,无法购买') def run(name):
search()
buys(name) '''接下来我们模拟多个消费者同时抢票,模拟多进程'''
if __name__ == '__main__':
for i in range(10):
p = Process(target=run, args=('用户%s号' % i,))
p.start()
文件以json格式来保存:
{"ticket_num": 0}

"""
产生的效果表明,所有的用户都可以抢票成功,这是因为在多个进程执行的同一刻,时间足够短所以多个进程可以同时改文件内的数据。for循环可以看做同一时间执行,图中执行效果并不是按照顺序来执行。要想避免此操作我们需要使用互斥锁。互斥锁建议加在数据处理的部分,因为互斥锁会拖慢代码执行的效率,只加在购票过程中,如果查票也要加锁name查票也需要排队,不符合逻辑。
"""
import random
from multiprocessing import Process,Lock
import json
import time def search(name):
with open(r'data.json', 'r', encoding='utf8') as f:
data = json.load(f)
print(f'亲爱的{name}目前余票{data.get("ticket_num")}') def buys(name):
# 查票
with open(r'data.json', 'r', encoding='utf8') as f:
data = json.load(f)
# 模拟网络延迟
time.sleep(random.randint(1,3))
if data.get('ticket_num') > 0:
with open(r'data.json', 'w', encoding='utf8') as f:
data['ticket_num'] -= 1
json.dump(data, f)
print(f'{name}购票成功')
else:
print('余票不足,无法购买') def run(name,mutex):
search(name) # 看票大家都可以看
mutex.acquire() # 抢锁,抢到之后其他操作无法执行,CPU被下面的代码占用
buys(name)
mutex.release() # 释放锁 '''接下来我们模拟多个消费者同时抢票,模拟多进程'''
if __name__ == '__main__':
mutex = Lock()
for i in range(10):
p = Process(target=run, args=('用户%s号' % i, mutex))
p.start()

3.线程理论

1.进程:是资源单位,表示一块内存空间。

2.线程:是执行单位,表示真正的代码指令。
"""
每个进程内都至少有一个线程,线程才是真正跟CPU打交道的角色。如果把进程比作一个车间,那么车间内的生产线就是线程。
有了进城为什么还要有线程呢?
1.进程只能在一个时间干一件事,如果想同时干两件事或多件事,进程就无能为力了。
2.进程在执行的过程中如果阻塞,例如等待输入,整个进程就会挂起,即使进程中有些工作不依赖于输入的数据,也将无法执行。
"""
3.线程特性:
3.1一个进程号可以设置多个线程
3.2同一个进程下的多个线程是数据共享的
3.3创建进程和线程的区别:创建进程的资源远大于线程

4.创建线程的两种方式

方法1:
from threading import Thread
import time def task(name):
print(f'{name} is running')
time.sleep(3)
print(f'{name} is over') t = Thread(target=task, args=('max',))
t.start() # 创建一个线程
print('主线程')
'''
max is running主线程
max is over
'''
"""
创建进程时由于子进程加载需要时间,所以会先执行子进程下面的操作。而创建线程消耗资源极小,所以会先打印max is running
"""
方法2:s
class MyThread(Thread):
def run(self):
print('run is running')
time.sleep(1)
print('run is over') obj = MyThread()
obj.start()
print('主线程')
创建进程CPU资源远大于线程
# 7 8

5.线程的诸多特性

1.join方法:
"""
正常情况下我们建立线程,会先执行子线程代码(IO状态除外),再执行主线程代码
"""
from threading import Thread
import time def task(name):
print(f'{name} is running')
time.sleep(1)
print(f'{name} is over') t = Thread(target=task, args=('max',))
t.start()
print('主线程')
'''
max is running主线程
max is over
'''
"""
加上join之后会先执行子线程代码,再执行主线程代码(和进程一样)
"""
from threading import Thread
import time def task(name):
print(f'{name} is running')
time.sleep(1)
print(f'{name} is over') t = Thread(target=task, args=('max',))
t.start()
t.join()
print('主线程')
'''
max is running
max is over
主线程
'''
2.同一个进程下的多个线程数据共享
from threading import Thread money = 1000 def task():
global money
money = 666 t = Thread(target=task)
t.start()
t.join()
print(money)
'''
666 改变的是该线程名称空间内的money,子线程和主线程数据共享
'''
3.current_thread():查看是主线程还是子线程,主线程是MainThread,子线程是Thread-数字,数字从1开始排
from threading import Thread, current_thread money = 1000 def task():
global money
money = 666
print(current_thread().name) t = Thread(target=task)
t.start()
t.join()
print(money)
print(current_thread().name)
'''
Thread-1
666
MainThread
'''
3.线程也可以用os.getpid()查看进程号,它们都同属一个进程,所以进程号一致
from threading import Thread
import os money = 1000 def task():
global money
money = 666
print('子线程进程号>>>:',os.getpid()) t = Thread(target=task)
t.start()
t.join()
print('主线程进程号>>>:',os.getpid())
'''
子线程进程号>>>: 34388
主线程进程号>>>: 34388
'''
4.active_count:用来查看存活的线程数量
"""
由于每次创建线程保留速度很短,线程创建之后就会消失,可以采用sleep的方法查看效果
"""
from threading import Thread, active_count
import os
import time money = 1000 def task():
print('子线程进程号>>>:',os.getpid())
time.sleep(3) for i in range(10):
t = Thread(target=task)
t.start()
print('存活的线程数:', active_count())
'''
11
'''
5.守护线程:守护线程和守护进程一样,会等待主进程(或线程)运行完毕后被销毁
from threading import Thread
import time def task():
print('子线程运行task开始')
time.sleep(3)
print('子线程运行task结束') t = Thread(target=task)
t.daemon = True
t.start()
print('主线程')
'''子线程运行task开始主线程''' # '子线程运行task结束'由于主线程运行结束没有执行

6.GIL全局解释器锁

"""
GIL是CPython解释器的特性,和Python语言无关系
"""
In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from executing Python bytecodes at once. This lock is necessary mainly because CPython’s memory management is not thread-safe. (However, since the GIL exists, other features have grown to depend on the guarantees that it enforces.
翻译:
1.在CPython解释器中存在全局解释器锁简称GIL
python解释器有很多类型
CPython JPython PyPython (常用的是CPython解释器)
2.GIL本质也是一把互斥锁,用来阻止同一个进程内多个线程同时执行(重要)
'''利用多道技术,同一时间同一个进程内,只能利用一个CPU'''
3.GIL的存在是因为CPython解释器中内存管理不是线程安全的(垃圾回收机制)
垃圾回收机制:引用计数、标记清除、分代回收
'''每一个进程都有一个垃圾回收机制的线程。为了防止每个数据值建立时就被垃圾回收机制回收,CPython中规定多个线程不能同时执行'''
4.所有解释型语言都逃不开上述的问题。

7.验证GIL的存在

from threading import Thread

num = 100

def task():
global num
num -= 1 t_list = []
for i in range(100):
t = Thread(target=task)
t.start()
t_list.append(t)
for t in t_list:
t.join()
print(num)

8.GIL与普通互斥锁

既然CPython解释器中有GIL 那么我们以后写代码是不是就不需要操作锁了!!!
"""
GIL只能够确保同进程内多线程数据不会被垃圾回收机制弄乱
并不能确保程序里面的数据是否安全
"""
import time
from threading import Thread,Lock num = 100 def task(mutex):
global num
mutex.acquire()
count = num
time.sleep(0.1)
num = count - 1
mutex.release() mutex = Lock()
t_list = []
for i in range(100):
t = Thread(target=task,args=(mutex,))
t.start()
t_list.append(t)
for t in t_list:
t.join()
print(num)

9.python多线程是否有用

需要分情况
情况1
单个CPU
多个CPU
情况2
IO密集型(代码有IO操作)
计算密集型(代码没有IO) 1.单个CPU
IO密集型
多进程
申请额外的空间 消耗更多的资源
多线程
消耗资源相对较少 通过多道技术
ps:多线程有优势!!!
计算密集型
多进程
申请额外的空间 消耗更多的资源(总耗时+申请空间+拷贝代码+切换)
多线程
消耗资源相对较少 通过多道技术(总耗时+切换)
ps:多线程有优势!!!
2.多个CPU
IO密集型
多进程
总耗时(单个进程的耗时+IO+申请空间+拷贝代码)
多线程
总耗时(单个进程的耗时+IO)
ps:多线程有优势!!!
计算密集型
多进程
总耗时(单个进程的耗时)
多线程
总耗时(多个进程的综合)
ps:多进程完胜!!! from threading import Thread
from multiprocessing import Process
import os
import time def work():
# 计算密集型
res = 1
for i in range(1, 100000):
res *= i if __name__ == '__main__':
# print(os.cpu_count()) # 12 查看当前计算机CPU个数
start_time = time.time()
# p_list = []
# for i in range(12): # 一次性创建12个进程
# p = Process(target=work)
# p.start()
# p_list.append(p)
# for p in p_list: # 确保所有的进程全部运行完毕
# p.join()
t_list = []
for i in range(12):
t = Thread(target=work)
t.start()
t_list.append(t)
for t in t_list:
t.join()
print('总耗时:%s' % (time.time() - start_time)) # 获取总的耗时 """
计算密集型
多进程:5.665567398071289
多线程:30.233906745910645
""" def work():
time.sleep(2) # 模拟纯IO操作 if __name__ == '__main__':
start_time = time.time()
# t_list = []
# for i in range(100):
# t = Thread(target=work)
# t.start()
# for t in t_list:
# t.join()
p_list = []
for i in range(100):
p = Process(target=work)
p.start()
for p in p_list:
p.join()
print('总耗时:%s' % (time.time() - start_time)) """
IO密集型
多线程:0.0149583816528320
多进程:0.6402878761291504
"""

10.死锁现象

acquire()
release() from threading import Thread,Lock
import time mutexA = Lock() # 产生一把锁
mutexB = Lock() # 产生一把锁 class MyThread(Thread):
def run(self):
self.func1()
self.func2() def func1(self):
mutexA.acquire()
print(f'{self.name}抢到了A锁')
mutexB.acquire()
print(f'{self.name}抢到了B锁')
mutexB.release()
print(f'{self.name}释放了B锁')
mutexA.release()
print(f'{self.name}释放了A锁') def func2(self):
mutexB.acquire()
print(f'{self.name}抢到了B锁')
time.sleep(1)
mutexA.acquire()
print(f'{self.name}抢到了A锁')
mutexA.release()
print(f'{self.name}释放了A锁')
mutexB.release()
print(f'{self.name}释放了B锁') for i in range(10):
obj = MyThread()
obj.start()

11.信号量

在python并发编程中信号量相当于多把互斥锁(公共厕所)

from threading import Thread, Lock, Semaphore
import time
import random sp = Semaphore(5) # 一次性产生五把锁 class MyThread(Thread):
def run(self):
sp.acquire()
print(self.name)
time.sleep(random.randint(1, 3))
sp.release() for i in range(20):
t = MyThread()
t.start()

12.event事件

from threading import Thread, Event
import time event = Event() # 类似于造了一个红绿灯 def light():
print('红灯亮着的 所有人都不能动')
time.sleep(3)
print('绿灯亮了 油门踩到底 给我冲!!!')
event.set() def car(name):
print('%s正在等红灯' % name)
event.wait()
print('%s加油门 飙车了' % name) t = Thread(target=light)
t.start()
for i in range(20):
t = Thread(target=car, args=('熊猫PRO%s' % i,))
t.start()

13.进程池与线程池

进程和线程能否无限制的创建 不可以
因为硬件的发展赶不上软件 有物理极限 如果我们在编写代码的过程中无限制的创建进程或者线程可能会导致计算机奔溃 池
降低程序的执行效率 但是保证了计算机硬件的安全
进程池
提前创建好固定数量的进程供后续程序的调用 超出则等待
线程池
提前创建好固定数量的线程供后续程序的调用 超出则等待 from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
import os
import time
import random
from threading import current_thread # 1.产生含有固定数量线程的线程池
# pool = ThreadPoolExecutor(10)
pool = ProcessPoolExecutor(5) def task(n):
print('task is running')
# time.sleep(random.randint(1, 3))
# print('task is over', n, current_thread().name)
# print('task is over', os.getpid())
return '我是task函数的返回值' def func(*args, **kwargs):
print('from func') if __name__ == '__main__':
# 2.将任务提交给线程池即可
for i in range(20):
# res = pool.submit(task, 123) # 朝线程池提交任务
# print(res.result()) # 不能直接获取
# pool.submit(task, 123).add_done_callback(func)

14.协程

"""
进程:资源单位
线程:执行单位
协程:单线程下实现并发(效率极高)
在代码层面欺骗CPU 让CPU觉得我们的代码里面没有IO操作
实际上IO操作被我们自己写的代码检测 一旦有 立刻让代码执行别的
(该技术完全是程序员自己弄出来的 名字也是程序员自己起的)
核心:自己写代码完成切换+保存状态
"""
import time
from gevent import monkey; monkey.patch_all() # 固定编写 用于检测所有的IO操作(猴子补丁)
from gevent import spawn def func1():
print('func1 running')
time.sleep(3)
print('func1 over') def func2():
print('func2 running')
time.sleep(5)
print('func2 over') if __name__ == '__main__':
start_time = time.time()
# func1()
# func2()
s1 = spawn(func1) # 检测代码 一旦有IO自动切换(执行没有io的操作 变向的等待io结束)
s2 = spawn(func2)
s1.join()
s2.join()
print(time.time() - start_time) # 8.01237154006958 协程 5.015487432479858

15.协程实现并发

import socket
from gevent import monkey;monkey.patch_all() # 固定编写 用于检测所有的IO操作(猴子补丁)
from gevent import spawn def communication(sock):
while True:
data = sock.recv(1024)
print(data.decode('utf8'))
sock.send(data.upper()) def get_server():
server = socket.socket()
server.bind(('127.0.0.1', 8080))
server.listen(5)
while True:
sock, addr = server.accept() # IO操作
spawn(communication, sock) s1 = spawn(get_server)
s1.join() 如何不断的提升程序的运行效率
多进程下开多线程 多线程下开协程

线程、GIL、协程的更多相关文章

  1. 进程、线程、协程和GIL(二)

    上一篇博客讲了进程.线程.协程和GIL的基本概念,这篇我们来说说在以下三点: 1> python中使用threading库来创建线程的两种方式 2> 使用Event对消来判断线程是否已启动 ...

  2. Python学习之路--进程,线程,协程

    进程.与线程区别 cpu运行原理 python GIL全局解释器锁 线程 语法 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Event事件 queue队列 生产者消费者模型 Q ...

  3. Queue、进程、线程、协程

    参考博客地址 http://www.cnblogs.com/alex3714/articles/5230609.html 1.python GIL全局解释器锁 python调用的操作系统的原生线程,当 ...

  4. 11.python之线程,协程,进程,

    一,进程与线程 1.什么是线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行 ...

  5. python中socket、进程、线程、协程、池的创建方式和应用场景

    进程 场景 利用多核.高计算型的程序.启动数量有限 进程是计算机中最小的资源分配单位 进程和线程是包含关系 每个进程中都至少有一条线程 可以利用多核,数据隔离 创建 销毁 切换 时间开销都比较大 随着 ...

  6. python 进程、线程与协程的区别

    进程.线程与协程区别总结 - 1.进程是计算器最小资源分配单位 - 2.线程是CPU调度的最小单位 - 3.进程切换需要的资源很最大,效率很低 - 4.线程切换需要的资源一般,效率一般(当然了在不考虑 ...

  7. python自动化开发-[第十天]-线程、协程、socketserver

    今日概要 1.线程 2.协程 3.socketserver 4.基于udp的socket(见第八节) 一.线程 1.threading模块 第一种方法:实例化 import threading imp ...

  8. python进程.线程和协程的总结

    I.进程: II.多线程threading总结 threading用于提供线程相关的操作,线程是应用系统中工作的最小单位(cpu调用的最小单位). Python当前版本的多线程没有实现优先级,线程组, ...

  9. python线程、协程、I/O多路复用

    目录: 并发多线程 协程 I/O多路复用(未完成,待续) 一.并发多线程 1.线程简述: 一条流水线的执行过程是一个线程,一条流水线必须属于一个车间,一个车间的运行过程就是一个进程(一个进程内至少一个 ...

  10. 深入Asyncio(二)从线程到协程

    线程的真相 多线程并不是一无是处,在实际问题中,要权衡优劣势来选择多线程.多进程或是协程.协程为多线程的某些问题提供了一种解决方案,所以学习协程首先要对线程有一定了解. 多线程优点 代码可读性 多线程 ...

随机推荐

  1. Linux操作系统,笔录!

    1.Linux 1.1.Linux介绍: Linux是一套免费使用和自由传播的类Unix操作系统,是一个基于POSIX和UNIX的多用户.多任务.支持多线程和多CPU的操作系统.它能运行主要的UNIX ...

  2. 【Java并发001】使用级别:线程相关知识

    一.前言 本文介绍Java线程相关知识(不包括线程同步+线程通信,这个内容在笔者的另一篇博客中介绍过了),包括:线程生命周期.线程优先级.线程礼让.后台线程.联合线程. 二.线程生命周期 2.1 引子 ...

  3. C++ 一个简洁的CHECK宏

    #define CHECK2(condition, message) \ (!(condition)) ? (std::cerr << "Assertion failed: (& ...

  4. c++ 三种继承

    继承优先级:private>protect>public ​ 变量或函数函数本身的类型和继承方式,比较,取小的就是继承的访问性 ​ eg: protected x,通过private继承, ...

  5. java 运用jxl 读取和输出Excel

    文章结尾源码以及jxl包 1.输出excel: package JmExcel; import java.io.File; import java.io.FileOutputStream; impor ...

  6. win10中jupyter notebook设置conda虚拟环境全流程及问题汇总

    正常安装流程 1.安装anaconda 必备条件 2.安装jupyter notebook 一般anaconda自带安装 如没有,则在终端安装 conda install jupyter notebo ...

  7. flutter系列之:如丝般顺滑的SliverAppBar

    目录 简介 SliverAppBar详解 SliverAppBar的使用 总结 简介 对于一个APP来说,肯定会有一个AppBar,这个AppBar一般包含了APP的导航信息等.虽然我们可以用一个固定 ...

  8. 02.JavaScript学习笔记1

    1.强制类型转换 当使用加号进行运算时,会将数字强制转换为字符串,然后再进行运算. const year = '1991'; console.log(year + 18); console.log(t ...

  9. PyTorch复现LeNet-5手写识别学习笔记

    用PyTorch搭建LeNet-5手写识别 首先申明,这篇博客用于记录本人看完LeNet-5论文,并对其中的算法进行复现的记录,可以看成是学习笔记 这里只介绍复现的工作,如果想了解更多有关网络的细节, ...

  10. 【机器学习】李宏毅——Anomaly Detection(异常检测)

    异常检测概述 首先要明确一下什么是异常检测任务.对于异常检测任务来说,我们希望能够通过现有的样本来训练一个架构,它能够根据输入与现有样本之间是否足够相似,来告诉我们这个输入是否是异常的,例如下图: 那 ...