1、 中文分词器

1.1 默认分词器

先来看看ElasticSearch中默认的standard 分词器,对英文比较友好,但是对于中文来说就是按照字符拆分,不是那么友好。

GET /_analyze
{
"analyzer": "standard",
"text": "中华人民共和国"
}

我们想要的效果是什么:“中华人民共和国”作为一整个词语。

得到的结果是:

{
"tokens" : [
{
"token" : "中",
"start_offset" : 0,
"end_offset" : 1,
"type" : "<IDEOGRAPHIC>",
"position" : 0
},
{
"token" : "华",
"start_offset" : 1,
"end_offset" : 2,
"type" : "<IDEOGRAPHIC>",
"position" : 1
},
{
"token" : "人",
"start_offset" : 2,
"end_offset" : 3,
"type" : "<IDEOGRAPHIC>",
"position" : 2
},
{
"token" : "民",
"start_offset" : 3,
"end_offset" : 4,
"type" : "<IDEOGRAPHIC>",
"position" : 3
},
{
"token" : "共",
"start_offset" : 4,
"end_offset" : 5,
"type" : "<IDEOGRAPHIC>",
"position" : 4
},
{
"token" : "和",
"start_offset" : 5,
"end_offset" : 6,
"type" : "<IDEOGRAPHIC>",
"position" : 5
},
{
"token" : "国",
"start_offset" : 6,
"end_offset" : 7,
"type" : "<IDEOGRAPHIC>",
"position" : 6
}
]
}

得到的结果不如人意,IK分词器就是目前最流行的es中文分词器

1.2 安装ik分词器

安装我就不详细说了,教程很多。

1.3 ik分词器基础知识

ik_max_word: 会将文本做最细粒度的拆分,比如会将“中华人民共和国人民大会堂”拆分为“中华人民共和国,中华人民,中华,华人,人民共和国,人民大会堂,人民大会,大会堂”,会穷尽各种可能的组合;

GET /_analyze
{
"analyzer": "ik_max_word",
"text": "中华人民共和国人民大会堂"
}
{
"tokens" : [
{
"token" : "中华人民共和国",
"start_offset" : 0,
"end_offset" : 7,
"type" : "CN_WORD",
"position" : 0
},
{
"token" : "中华人民",
"start_offset" : 0,
"end_offset" : 4,
"type" : "CN_WORD",
"position" : 1
},
{
"token" : "中华",
"start_offset" : 0,
"end_offset" : 2,
"type" : "CN_WORD",
"position" : 2
},
{
"token" : "华人",
"start_offset" : 1,
"end_offset" : 3,
"type" : "CN_WORD",
"position" : 3
},
{
"token" : "人民共和国",
"start_offset" : 2,
"end_offset" : 7,
"type" : "CN_WORD",
"position" : 4
},
{
"token" : "人民",
"start_offset" : 2,
"end_offset" : 4,
"type" : "CN_WORD",
"position" : 5
},
{
"token" : "共和国",
"start_offset" : 4,
"end_offset" : 7,
"type" : "CN_WORD",
"position" : 6
},
{
"token" : "共和",
"start_offset" : 4,
"end_offset" : 6,
"type" : "CN_WORD",
"position" : 7
},
{
"token" : "国人",
"start_offset" : 6,
"end_offset" : 8,
"type" : "CN_WORD",
"position" : 8
},
{
"token" : "人民大会堂",
"start_offset" : 7,
"end_offset" : 12,
"type" : "CN_WORD",
"position" : 9
},
{
"token" : "人民大会",
"start_offset" : 7,
"end_offset" : 11,
"type" : "CN_WORD",
"position" : 10
},
{
"token" : "人民",
"start_offset" : 7,
"end_offset" : 9,
"type" : "CN_WORD",
"position" : 11
},
{
"token" : "大会堂",
"start_offset" : 9,
"end_offset" : 12,
"type" : "CN_WORD",
"position" : 12
},
{
"token" : "大会",
"start_offset" : 9,
"end_offset" : 11,
"type" : "CN_WORD",
"position" : 13
},
{
"token" : "会堂",
"start_offset" : 10,
"end_offset" : 12,
"type" : "CN_WORD",
"position" : 14
}
]
}

ik_smart: 会做最粗粒度的拆分,比如会将“中华人民共和国人民大会堂”拆分为“中华人民共和国,人民大会堂”。

GET /_analyze
{
"analyzer": "ik_smart",
"text": "中华人民共和国人民大会堂"
}
{
"tokens" : [
{
"token" : "中华人民共和国",
"start_offset" : 0,
"end_offset" : 7,
"type" : "CN_WORD",
"position" : 0
},
{
"token" : "人民大会堂",
"start_offset" : 7,
"end_offset" : 12,
"type" : "CN_WORD",
"position" : 1
}
]
}

1.4 ik分词器的使用

存储时,使用ik_max_word,搜索时,使用ik_smart,原因也很容易想到:存储时,尽量存储多的可能性,搜索时做粗粒度的拆分

例如,创建以下映射

PUT /my_index
{
"mappings": {
    "properties": {
      "text": {
        "type": "text",
        "analyzer": "ik_max_word",
        "search_analyzer": "ik_smart"
      }
    }
}
}

2、ik配置文件

ik配置文件地址:插件的config目录下

部分文件内容如下:

  • IKAnalyzer.cfg.xml:用来配置自定义词库
  • main.dic:ik原生内置的中文词库,总共有27万多条,只要是这些单词,都会被分在一起,都会按照这个里面的词语去分词,ik原生最重要的两个配置文件之一
  • preposition.dic: 介词
  • quantifier.dic:放了一些单位相关的词,量词
  • suffix.dic:放了一些后缀
  • surname.dic:中国的姓氏
  • stopword.dic:包含了英文的停用词,a the and at but等。会在分词的时候,直接被干掉,不会建立在倒排索引中。ik原生最重要的两个配置文件之一

3、自定义词库

3.1 自定义分词词库

每年都会涌现一些特殊的流行词,内卷,耗子尾汁,不讲武德等,这些词一般不会出现在ik的原生词典里,分词的时候也不会把这些词汇当作整个词汇来进行分词。所以需要我们自己补充自己的最新的词语,到ik的词库里面。

就拿耗子尾汁来说,不做自定义分词的效果如下。

在实际的搜索过程中,肯定不希望把它分词,而是希望把它作为一个整体的词汇。

(1)首先在IK插件的config目录下,有一个IKAnalyzer.cfg.xml文件。

(2)使用Notepad++打开该文件

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>IK Analyzer 扩展配置</comment>
<!--用户可以在这里配置自己的扩展字典 -->
<entry key="ext_dict"></entry>
<!--用户可以在这里配置自己的扩展停止词字典-->
<entry key="ext_stopwords"></entry>
<!--用户可以在这里配置远程扩展字典 -->
<!-- <entry key="remote_ext_dict">words_location</entry> -->
<!--用户可以在这里配置远程扩展停止词字典-->
<!-- <entry key="remote_ext_stopwords">words_location</entry> -->
</properties>

(3)可以看到上面的提示

(4)于是我们创建一个名为mydict.dic的文件,内容如下

(5)注意如果多个词语,就着下一行接着录入,然后把这个文件放在与配置文件的相同目录下。

(6)然后再把文件名mydict.dic添加在IKAnalyzer.cfg.xml文件中,然后保存

(7)然后重启es,查看效果

(9)可以看到,耗子尾汁这个词已经能够作为一个整体的词语来做分词了。

3.2 自定义停用词库

比如了,的,啥,么,我们可能并不想去建立索引,让人家搜索。

做法与上面自定义词库类似,这里只是简单的说一下,比方说建立一个mystop.dic文件,把不想建立的索引的词写进文件,把文件与配置文件放在同一个目录,然后在把文件名写进配置文件对应的位置,如下所示

然后在重启es,就可以查看效果了。

这样做的一个好处就是,已经有了常用的中文停用词,但是可以补充自己的停用词。

4、热更新词库

4.1 热更新

每次都是在es的扩展词典中,手动添加新词语,很坑

(1)每次添加完,都要重启es才能生效,非常麻烦

(2)es是分布式的,可能有数百个节点,你不能每次都一个一个节点上面去修改

所以引出热更新的解决方案。es不停机,直接我们在外部某个地方添加新的词语,es中立即热加载到这些新词语

热更新的方案

(1)基于ik分词器原生支持的热更新方案,部署一个web服务器,提供一个http接口,通过modified和tag两个http响应头,来提供词语的热更新,这种方式在官网也提到过。https://github.com/medcl/elasticsearch-analysis-ik


修改了插件配置之后需要重启,如果之后对远程的词库.txt文件修改就不需要再重启ES了,该插件支持热更新分词。

(2)修改ik分词器源码,然后手动支持从数据库中每隔一定时间,自动加载新的词库

一般来说采用第二种方案,第一种,ik git社区官方都不建议采用,觉得不太稳定

4.2 步骤

1、下载源码,https://github.com/medcl/elasticsearch-analysis-ik/releases

ik分词器,是个标准的java maven工程,直接导入idea就可以看到源码

2、修改源

org.wltea.analyzer.dic.Dictionary类,160行Dictionary单例类的初始化方法,在这里需要创建一个我们自定义的线程,并且启动它

org.wltea.analyzer.dic.HotDictReloadThread类:就是死循环,不断调用Dictionary.getSingleton().reLoadMainDict(),去重新加载词典

Dictionary类,399行:this.loadMySQLExtDict(); 加载mysql字典。

Dictionary类,609行:this.loadMySQLStopwordDict();加载mysql停用词

config下jdbc-reload.properties。mysql配置文件

3、mvn package打包代码

target\releases\elasticsearch-analysis-ik-7.3.0.zip

4、解压缩ik压缩包

将mysql驱动jar,放入ik的目录下

5、修改jdbc相关配置

6、重启es

观察日志,日志中就会显示我们打印的那些东西,比如加载了什么配置,加载了什么词语,什么停用词

7、在mysql中添加词库与停用词

8、分词实验,验证热更新生效

这里只是大概的一个步骤,具体情况按照自己的业务逻辑进行开发。

ElasticSearch7.3学习(十五)----中文分词器(IK Analyzer)及自定义词库的更多相关文章

  1. 【自定义IK词典】Elasticsearch之中文分词器插件es-ik的自定义词库

    Elasticsearch之中文分词器插件es-ik 针对一些特殊的词语在分词的时候也需要能够识别 有人会问,那么,例如: 如果我想根据自己的本家姓氏来查询,如zhouls,姓氏“周”.      如 ...

  2. Elasticsearch之中文分词器插件es-ik的自定义词库

    它在哪里呢? 非常重要! [hadoop@HadoopMaster custom]$ pwd/home/hadoop/app/elasticsearch-2.4.3/plugins/ik/config ...

  3. 转:solr6.0配置中文分词器IK Analyzer

    solr6.0中进行中文分词器IK Analyzer的配置和solr低版本中最大不同点在于IK Analyzer中jar包的引用.一般的IK分词jar包都是不能用的,因为IK分词中传统的jar不支持s ...

  4. 我与solr(六)--solr6.0配置中文分词器IK Analyzer

    转自:http://blog.csdn.net/linzhiqiang0316/article/details/51554217,表示感谢. 由于前面没有设置分词器,以至于查询的结果出入比较大,并且无 ...

  5. 31.IK分词器配置文件讲解以及自定义词库

    主要知识点: 知道IK默认的配置文件信息 自定义词库     一.ik配置文件     ik配置文件地址:es/plugins/ik/config目录     IKAnalyzer.cfg.xml:用 ...

  6. 30.IK分词器配置文件讲解以及自定义词库

    主要知识点: 知道IK默认的配置文件信息 自定义词库     一.ik配置文件     ik配置文件地址:es/plugins/ik/config目录     IKAnalyzer.cfg.xml:用 ...

  7. Elasticsearch之中文分词器插件es-ik的自定义热更新词库

    不多说,直接上干货! 欢迎大家,关注微信扫码并加入我的4个微信公众号:   大数据躺过的坑      Java从入门到架构师      人工智能躺过的坑         Java全栈大联盟       ...

  8. 沉淀再出发:ElasticSearch的中文分词器ik

    沉淀再出发:ElasticSearch的中文分词器ik 一.前言   为什么要在elasticsearch中要使用ik这样的中文分词呢,那是因为es提供的分词是英文分词,对于中文的分词就做的非常不好了 ...

  9. 如何在Elasticsearch中安装中文分词器(IK)和拼音分词器?

    声明:我使用的Elasticsearch的版本是5.4.0,安装分词器前请先安装maven 一:安装maven https://github.com/apache/maven 说明: 安装maven需 ...

随机推荐

  1. Vue 源码解读(3)—— 响应式原理

    前言 上一篇文章 Vue 源码解读(2)-- Vue 初始化过程 详细讲解了 Vue 的初始化过程,明白了 new Vue(options) 都做了什么,其中关于 数据响应式 的实现用一句话简单的带过 ...

  2. SSM整合时页面出现$ is not defined

    $ is not defined ,有以下几种可能: 1.没有导入jQuery的jar包 2.jQuery的jar包放进了WEB-INF里,jQuery的jar包最好放在WebContent下,跟WE ...

  3. 『德不孤』Pytest框架 — 5、Pytest失败重试

    Pytest失败重试就是,在执行一次测试脚本时,如果一个测试用例执行结果失败了,则重新执行该测试用例. 前提: Pytest测试框架失败重试需要下载pytest-rerunfailures插件. 安装 ...

  4. 开源报表工具太复杂?不如用这款免费web报表工具

    随着信息系统的高速发展,报表平台逐渐成为了信息系统当中最为核心和重要的功能模块.报表工具有助于将原始数据可视化显示,使决策者或者相关人员能够一览整体的数据趋势,完整的报表解决方案会提供多样的表格数据展 ...

  5. 【C#设计模式】里氏替换原则

    今天,我们再来学习 SOLID 中的"L"对应的原则:里式替换原则. 里氏替换原则 里氏替换原则(Liskov Substitution Principle):派生类(子类)对象能 ...

  6. SQL Server--插入一天数据返回ID值

    这里将该功能写成了一个存储过程, 本来只写Insert的话,返回1,即影响的行数,该数据没太大应用意义. 想在Insert的基础上,返回新添加的这条数据的ID,两种方法: 1 .添加第17行的Sele ...

  7. 【python】pip安装库时出现Read timed out.解决办法

    昨天第一次用python画圆,当时并没有安装numpy库(导入数据包)和matplotlib库(导入图形包),于是尝试用pip安装库 首先,我先更新了pip,如下图: 顺便附上成功截图: 然后安装nu ...

  8. hive从入门到放弃(一)——初识hive

    之前更完了<Kafka从入门到放弃>系列文章,本人决定开新坑--hive从入门到放弃,今天先认识一下hive. 没看过 Kafka 系列的朋友可以点此传送阅读: <Kafka从入门到 ...

  9. react 也就这么回事 05 —— 组件 & Props

    什么是组件:用来实现局部功能的可复用代码片段 比如很多界面会用到"分页"功能,因此可以将它封装成独立的组件 这样用到分页的界面只需引入该组件而不必重新写代码 1 定义组件 在 Re ...

  10. 03 Java的数据类型分为两大类 类型转换 八大基本类型

    数据类型 强类型语言:要求变量的使用要严格符合规定,所有变量都必须先定义后才能使用 Java的数据类型分为两大类 基本类型(primitive type) 数值类型 整数类型 byte占1个字节范围: ...