技术背景

Vmap是一种在python里面经常提到的向量化运算的功能,比如之前大家常用的就是numba和jax中的向量化运算的接口。虽然numpy中也使用到了向量化的运算,比如计算两个numpy数组的加和,就是一种向量化的运算。但是在numpy中模块封装的较好,定制化程度低,但是使用便捷,只需要调用最上层的接口即可。现在最新版本的mindspore也已经推出了vmap的功能,像mindspore、numba还有jax,与numpy的最大区别就是,需要在使用过程中对需要向量化运算的函数额外嵌套一层vmap的函数,这样就可以实现只对需要向量化运算的模块进行扩展。用一个公式来理解向量化运算的话就是:

\[a_1+b_1=c_1\\
a_2+b_2=c_2\\
.\\
.\\
.\\
a_n+b_n=c_n\\
\Downarrow\\
\vec{a}+\vec{b}=\vec{c}
\]

安装最新版MindSpore

关于jax中的vmap使用案例,可以参考前面介绍的LINCS约束算法实现SETTLE约束算法批量化实现这两篇文章,都有使用到jax的vmap功能,这里我们着重介绍的是MindSpore中最新实现的vmap功能。首先我们需要安装mindspore最新的Nightly版本,其对应的是MindSpore的Gitee仓库中的master分支,具体安装指令可以参考其官方链接

因为我们本地已经安装过Mindspore的旧版本,因此还需要在安装指令之后加上--upgrade操作,否则会导致系统误以为本地已经安装成功,不会执行安装的操作:

$ python3 -m pip install mindspore-cuda11-dev -i https://pypi.tuna.tsinghua.edu.cn/simple --upgrade

Vmap功能测试

这里我们先来看一个比较简单的示例:

In [1]: from mindspore import Tensor

In [2]: from mindspore.ops.functional import vmap

In [3]: y = lambda a,b: a+b

In [4]: A = Tensor([1,2,3])

In [5]: B = Tensor([3,4,5])

In [6]: vmap_y = vmap(y,in_axes=(0,0))

In [7]: y(A[0],B[0]) # 元素加和
Out[7]: Tensor(shape=[], dtype=Int64, value= 4) In [8]: vmap_y(A,B) # 矢量加和
Out[8]: Tensor(shape=[3], dtype=Int64, value= [4, 6, 8])

在上面的这个示例中,我们定义了一个加法函数y,作用就是把输入的两个对象相加。这里需要注意的是,如果输入给y的是两个Mindspore的Tensor对象,那么会直接返回两个Tensor对应位置相加的结果。但是如果输入给y的是两个普通python的list,则输出的结果会是两个list的拼接,这跟不同类型的加法的实现方式有关,在文末总结中会进行解释。这里我们只是想说明:y本身是一个元素加和的函数,可以通过vmap使其称为矢量加和的函数。关于输入的in_axes参数,指的是扩展的维度。比如我们写了一个支持\((A,A)\times(A,1)\)维度的函数,如果把in_axes参数设置为0,那么就可以得到一个支持计算\((B,A,A)\times(B,A,1)\)维度的函数。其中in_axes参数,决定的是被扩展的维度B所在的位置。这一点我们可以看一下vmap的官方示例:

在这个案例中,也是定义了一个普通的加和函数,通过vmap去扩展不同的维度,大致的计算逻辑为:

\[(A,)+(A,)+(A,)\\
\Downarrow^{in\_axes=(0,1,None)}\\
(B,A)+(A,B)+(A,)=(B,A)+(B,A)+(1,A)=(B,A)\\
\Downarrow^{out\_axes=1}\\
(A,B)
\]

其实这个过程中关于in_axes是比较容易可以理解的,但是这个out_axes有时候会让人难以捉摸,在github上专门有人提出了这个issue并有人做出了解释:

结合上面的案例,其实out_axes就是决定了扩展的维度B在结果中的位置,比如out_axes=1,所对应的结果中就是\((x,B,x,...x)\)。也就是说,其不影响计算的结果,但是有可能会对计算结果进行转置操作,在MindSpore和Numpy中称为swap_axes

总结概要

本文介绍了华为推出的深度学习框架MindSpore中最新支持的vmap功能函数,可以用于向量化的计算,本质上的主要作用是替代并加速python中的for循环的操作。最早是在numba和pytroch、jax中对vmap功能进行了支持,其实numpy中的底层计算也用到了向量化的运算,因此速度才如此之快。vmap在python中更多的是与即时编译功能jit一同使用,能够起到简化编程的同时对性能进行极大程度的优化,尤其是python中的for循环的优化。但是对于一些numpy、jax或者MindSpore中已有的算子而言,还是建议直接使用其已经实现的算子,而不是vmap再手写一个。

版权声明

本文首发链接为:https://www.cnblogs.com/dechinphy/p/ms-vmap.html

作者ID:DechinPhy

更多原著文章请参考:https://www.cnblogs.com/dechinphy/

打赏专用链接:https://www.cnblogs.com/dechinphy/gallery/image/379634.html

腾讯云专栏同步:https://cloud.tencent.com/developer/column/91958

参考链接

  1. https://gitee.com/mindspore/mindspore/blob/master/mindspore/python/mindspore/ops/functional.py#L845

MindSpore尝鲜之Vmap功能的更多相关文章

  1. MindSpore尝鲜之爱因斯坦求和

    技术背景 在前面的博客中,我们介绍过关于numpy中的张量网络的一些应用,同时利用相关的张量网络操作,我们可以实现一些分子动力学模拟中的约束算法,如LINCS等.在最新的nightly版本的MindS ...

  2. Leetcode多线程题库练习(新功能尝鲜)& 个人感悟

    大家好, 我是方子龙.很久没有自己写文章了. 一面是因为工作上的需求开发任务比较重,下班回家基本上就躺床玩几把王者,度过闲暇时光. 二面是一有点时间就自己主动地去看书和学习,知道自己还缺少很多知识,由 ...

  3. Windows 10 周年版尝鲜

    早在今年的 Build 大会上,微软就开始宣传最新的 Windows 10 周年版更新,炫了不少特技,直到昨天(2016/8/2 PST)才正式放出,相关新闻可以参考这里,正式的版本为 Version ...

  4. 【翻译】五步快速使用LINQPad尝鲜StreamInsight

    StreamInsight  学习地址:http://www.cnblogs.com/StreamInsight/archive/2011/10/26/StreamInsight-Query-Seri ...

  5. Spring-Data-JPA尝鲜:快速搭建CRUD+分页后台实例

    前言:由于之前没有接触过Hibernate框架,但是最近看一些博客深深被它的"效率"所吸引,所以这就来跟大家一起就着一个简单的例子来尝尝Spring全家桶里自带的JPA的鲜 Spr ...

  6. 微信团队分享:Kotlin渐被认可,Android版微信的技术尝鲜之旅

    本文由微信开发团队工程是由“oneliang”原创发表于WeMobileDev公众号,内容稍有改动. 1.引言   Kotlin 是一个用于现代多平台应用的静态编程语言,由 JetBrains 开发( ...

  7. Linux下尝鲜IDE Rider .NET又一开发利器

    RiderRS 扯淡:很多人说:jetbrains出品,必属精品,jetbrains确实出了不少好东西,但是他的产品总感觉越用越慢,我的小Y430P高配版也倍感压力,内存占用率高. Multiple ...

  8. 微信小程序“满月”:尝鲜之后你还用过它吗?

    距离 2017 年 1 月 9 日微信小程序上线,整整过去了一个月时间.和互联网时代每天出现的众多新鲜事物相似,小程序甫一诞生,立即占据了各大科技媒体网站头屏并引起社交圈的兴奋讨论.由于背靠微信,纷纷 ...

  9. 基于 Blazui 的 Blazor 后台管理模板 BlazAdmin 正式尝鲜

    简介 BlazAdmin 是一个基于Blazui的后台管理模板,无JS,无TS,非 Silverlight,非 WebForm,一个标签即可使用. 我将在下一篇文章讨论 Blazor 服务器端渲染与客 ...

随机推荐

  1. kubernetes之数据管理

    volume emptyDir [machangwei@mcwk8s-master ~]$ kubectl apply -f mcwVolume1.yml #部署emptydir pod/produc ...

  2. Grafana v8.3.3 & jmeter-influxdb2-backend

    1. 说明 接上篇文章,今天继续聊Grafana & influxdb2-backend. 2. Grafana v8.3.3安装 下载rpm包 wget https://dl.grafana ...

  3. Dubbo源码剖析三之服务注册过程分析

    Dubbo源码剖析二之注册中心 - 池塘里洗澡的鸭子 - 博客园 (cnblogs.com)中对注册中心进行了简单的介绍,对Dubbo整合Zookeeper链接源码进行了详细分析.本文接着对服务注册过 ...

  4. ios cannot use "@throw" with objective-c exceptions disabled 问题解决方案

    http://blog.csdn.net/huayu_huayu/article/details/51781182 我不转载  我跳转 哈哈哈哈哈哈   其实也就是 解决办法:修改target -&g ...

  5. const 和指针之间的姻缘

    const和指针到底有何姻缘呢? char const *p = NULL; //char const 和 const char 是一样的,p 是一个指向常整型的指针变量 ,指针变量的值不能改变 ch ...

  6. 2021年企业bi工具推荐

    数据时代,商业智能工具对于企业了解复杂的大数据非常重要. 我们研究整理了国内外几十个商业智能BI工具,主要就其在功能.性能.价格.体验.安全等方面进行评测,希望帮助企业更好的进行BI产品选型. 一.t ...

  7. 技术管理进阶——为什么Leader的话有时候你听不懂

    原创不易,求分享.求一键三连 Hi,各位亲爱的小伙伴,小钗公号遵循日复盘->周复盘->月复盘->季度复盘->年总结策略,所以某类型文章到后期才会成体系. 今天这篇文章属于「月复 ...

  8. SqlServer 局域网内不能连接对方数据库?

    一直都是连接的远程测试服务器的数据库,今天想把自己的数据库开放出来让公司同事连接,竟然连接失败!转了很大一个圈终于搞定了. 接下来就把这次心历路程发出来,希望能帮助到有需要的博友. PS: 我和同事的 ...

  9. C# HttpRequest 请求

    public static string Post(string Url, string postDataStr, string cookies) { HttpWebRequest request = ...

  10. pygame写俄罗斯方块

    代码搬运修改自python编写俄罗斯方块 更新时间:2020年03月13日 09:39:17 作者:勤勉之 from tkinter import * from random import * imp ...