特征工程常见示例: 分类数据、文本、图像。 还有提高模型复杂度的 衍生特征 和 处理 缺失数据的填充 方法。这个过程被叫做向量化。把任意格式的数据 转换成具有良好特性的向量形式。

分类特征

比如房屋数据: 房价、面积、地点信息。



方案1:把分类特征用映射关系 编码成 整数 。

{'Queen Anne': 1, 'Fremont': 2, 'Wallingford': 3};

在scikit-learn中并不好,数值特征可以反映代数量。会产生 1<2<3的

方案2:使用独热编码

有效增加额外的类,让0和1 出现在对应的列分别表示 每个分类值 的有 或 无。

使用scikit-learn的DictVectorizer类就可以实现。

neighborhood字段转换成三列表示三个地点标签。 每一行中用1所在的列对应一个地点。

当这些分类特征编码之后,就可以和之前一样拟合 Scikit-Learn模型了

如果要看每一列的含义,使用get_feature_names()

缺陷:分类特征有许多枚举值,维度就会急剧增加。 由于被编码的数据中有许多0,因此用稀疏矩阵 会非常高效

文本特征

将文本转换成一组数值, 最简单的编码方法之一就是 单词统计



这样统计有一些问题,就是常用词聚集太高的权重,不合理。

解决方案:使用TF-IDF term requency-inverse document frequency 词频逆文档评率。 通过单词在文档中出现的评率来衡量器权重。

图像特征

对图像进行编码,最简单的就是:用像素表示图像。 后面详细介绍。 Scikit-Learn Scikit-Image

衍生特征

输入特征进过数学变换 衍生出来的新特征。 通过改变输入数据。 这种处理方式 又被称为 基函数回归。

不能用直线拟合的数据

如果按照直线拟合取得最优解如下



我们需要一个更复杂的模型来描述 x 与 y的关系,可以对数据进行变换,蹦增加额外的特征来提升模型 的复杂度。

比如:增加多项式特征。

第一列表示x,

第二列表示x^2

第三列表示x^3

重新拟合。

缺失值填充

原始数据如下



首先需要适当的值替换这些缺失数据。

方案1: 用列均值替换缺失值,中位数、众数。 SciKit-Learn 有Imputer类可以实现。

方案2:用矩阵填充或其他模型来处理缺失值,复杂。

特征管道

如果经常需要手动应用以上任意一种方法,你就会感到厌倦。尤其是多个步骤串起来使用。

1)用均值填充缺失值

2)将衍生特征转换为二次方

3)拟合线性回归模型

SciKit提供了一个管道对象。

Python数据科学手册-机器学习之特征工程的更多相关文章

  1. Python数据科学手册-机器学习:朴素贝叶斯分类

    朴素贝叶斯模型 朴素贝叶斯模型是一组非常简单快速的分类方法,通常适用于维度非常高的数据集.因为运行速度快,可调参数少.是一个快速粗糙的分类基本方案. naive Bayes classifiers 贝 ...

  2. Python数据科学手册-机器学习介绍

    机器学习分为俩类: 有监督学习 supervised learning 和 无监督学习 unsupervised learning 有监督学习: 对数据的若干特征与若干标签之间 的关联性 进行建模的过 ...

  3. Python数据科学手册-机器学习: 流形学习

    PCA对非线性的数据集处理效果不太好. 另一种方法 流形学习 manifold learning 是一种无监督评估器,试图将一个低维度流形嵌入到一个高纬度 空间来描述数据集 . 类似 一张纸 (二维) ...

  4. Python数据科学手册-机器学习之模型验证

    模型验证 model validation 就是在选择 模型 和 超参数 之后.通过对训练数据进行学习.对比模型对 已知 数据的预测值和实际值 的差异. 错误的模型验证方法. 用同一套数据训练 和 评 ...

  5. Python数据科学手册-机器学习: k-means聚类/高斯混合模型

    前面学习的无监督学习模型:降维 另一种无监督学习模型:聚类算法. 聚类算法直接冲数据的内在性质中学习最优的划分结果或者确定离散标签类型. 最简单最容易理解的聚类算法可能是 k-means聚类算法了. ...

  6. Python数据科学手册-机器学习: 主成分分析

    PCA principal component analysis 主成分分析是一个快速灵活的数据降维无监督方法, 可视化一个包含200个数据点的二维数据集 x 和 y有线性关系,无监督学习希望探索x值 ...

  7. Python数据科学手册-机器学习: 决策树与随机森林

    无参数 算法 随机森林 随机森林是一种集成方法,集成多个比较简单的评估器形成累计效果. 导入标准程序库 随机森林的诱因: 决策树 随机森林是建立在决策树 基础上 的集成学习器 建一颗决策树 二叉决策树 ...

  8. Python数据科学手册-机器学习: 支持向量机

    support vector machine SVM 是非常强大. 灵活的有监督学习算法, 可以用于分类和回归. 贝叶斯分类器,对每个类进行了随机分布的假设,用生成的模型估计 新数据点 的标签.是属于 ...

  9. Python数据科学手册-机器学习:线性回归

    朴素贝叶斯是解决分类任务的好起点,线性回归是解决回归任务的好起点. 简单线性回归 将数据拟合成一条直线. y = ax + b , a 是斜率, b是直线截距 原始数据如下: 使用LinearRegr ...

随机推荐

  1. 详细图解 Netty Reactor 启动全流程 | 万字长文 | 多图预警

    本系列Netty源码解析文章基于 4.1.56.Final版本 大家第一眼看到这幅流程图,是不是脑瓜子嗡嗡的呢? 大家先不要惊慌,问题不大,本文笔者的目的就是要让大家清晰的理解这幅流程图,从而深刻的理 ...

  2. SpringBoot接口 - 如何优雅的写Controller并统一异常处理?

    SpringBoot接口如何对异常进行统一封装,并统一返回呢?以上文的参数校验为例,如何优雅的将参数校验的错误信息统一处理并封装返回呢?@pdai 为什么要优雅的处理异常 如果我们不统一的处理异常,经 ...

  3. python解决“failed to execute pyi_rth_pkgres”问题

    pip uninstall pyinstaller pip install https://github.com/pyinstaller/pyinstaller/archive/develop.zip

  4. VMare 设置固定IP和网段

    切换目录 cd /etc/sysconfig/network-scripts ls查看当前目录下的东西 找到ipcfg- 开头的,而且不是iocfg-lo,而上图就是那个ifcfg-ens33. 则进 ...

  5. LNMP架构及DISCUZ论坛部署

    1)(5分)服务器IP地址规划:client:12.0.0.12/24,网关服务器:ens36:12.0.0.1/24.ens33:172.16.10.1/24,Web1:172.16.10.10/2 ...

  6. maven配置的一个问题

    资源导出问题 如果想和dao接口放在一个包下可以做如下配置,但是如果不放在dao接口下,那就会报错,至于为什么,那就得好好学学maven了,因为下面是yaml的,所以需要添加yaml,不然他扫描不到 ...

  7. 2022-07-10 第五小组 pan小堂 css学习笔记

    css学习笔记 什么是 CSS? CSS 指的是层叠样式表* (Cascading Style Sheets) CSS 描述了如何在屏幕.纸张或其他媒体上显示 HTML 元素 CSS 节省了大量工作. ...

  8. hexo-yilia主题支持twikoo评论系统

    如果图片无法加载,可到 我的博客 中,查看完整文章 yilia-more 已经增加对 twikoo 的支持,可直接使用 代码修改 layout/_partial/post 路径下新建 twikoo.e ...

  9. YII 技巧

    大部分来源于  https://getyii.com/topic/47#comment24 获取当前Controller name和action name(在控制器里面使用) echo $this-& ...

  10. 网站加了CDN后,字体图标报错Access-Control-Allow-Origin

    这两天将自己做的网站(PM老猫)上线了,上线后发现因为之前购买的服务器带宽较小,第一次打开网站页面就会比较慢,想着给网站加了个CDN,让静态文件直接通过CDN访问.网上一找发现可以白嫖的CDN服务挺多 ...