LGP4456题解
我就是不用矩阵快速幂!
题意:一个 \(\rm 01\) 序列为合法的当且仅当没有两个相邻的 \(1\),若 \(1\) 的个数为 \(x\),\(0\) 的个数为 \(y\),这个 \(\rm 01\) 的价值为 \(x^a \times y^b\)。
请求出所有长度为 \(n\) 的 \(\rm 01\) 序列的价值之和,对 \(m\) 取模。
这道题的阴间之处就在于 \(m\) 不一定是质数。。。
首先我们枚举 \(1\) 的个数,可以得到答案为:
\]
如果 \(m\) 是质数的话,这里就可以直接 \(O(n)\) 计算了,可惜并不是。
考虑使用二项式定理展开后者:
\]
\]
现在的问题就是如何处理 \(\sum_{i=0}^{\infty}\binom {n-i+1}ii^k\)。
使用 \(\binom n m=\binom {n-1} m+\binom {n-1}{m-1}\) 展开组合数:
\]
\]
\]
\]
把后面用二项式定理展开:
\]
\]
所以:
\]
如果仔细点儿可以发现这里实际上是在说:
\]
也就是说 $f_{i,j} $ 对 $ f_{n,k}$ 的贡献与斐波那契数列有关,为 \(\binom k jfib_{n-i-2}\)。
接下来就很好办了。
设 \(F_k(x)=\sum_{i=0}^{\infty}f_{i,k}x^i\)
首先很明显,根据定义有 \(F_0(x)=\frac 1 {1-x-x^2}\)。(也就是斐波那契数列)
于是有:
\]
我们可以根据这个直接知道 \(F_1(x)=\frac 1 {(1-x-x^2)^2}\)。
那么 \(F_2(x)\) 呢?
\]
合理猜测 \(F_k(x)\) 的分母为 \((1-x-x^2)^{k+1}\)。
于是我们只维护分子,不维护分母。
那么分子所对应的递推式就应该是 \(H_k(x)=\frac {x^2}{1-x-x^2}\sum_{i=0}^{k-1}\binom k iH_i(x)(1-x-x^2)^{k-i}\)。
于是我们使用类似秦九韶求多项式的值的方法可以做到 \(O(k^3)\) 处理出 \(H_0(x) \sim H_k(x)\),然后再使用常系数齐次线性递推算一下就是和比暴力矩快还慢的\(O((a+b)^3+a(a+b)^2\log n)\) 了。
第二种做法:我们可以列一个 DP 方程,然后用 BM 大力猜出递推式,就可以做到 \(O((a+b)^2\log n)\) 了,好耶!(这里根据直觉猜测递推式的长度就是 a+b)
LGP4456题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- c语言字符串函数详解
转载请注明来源:https://www.cnblogs.com/hookjc/ oid *memset(void *dest, int c, size_t count); 将dest前面count个字 ...
- 修改注册表使win server 2012R2开机进入桌面而不是开始界面
首先,使用WIN+R快捷键打开运行命令,使用命令打开注册表编辑器 然后,进入注册表之后,我们一次定位到HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\ ...
- 关于tx:method和pointcut中的方法,即事务管理中的方法和切入点表达式中的方法具体如何执行
<tx:advice id="transaction" tranction-manager="transactionManager"> <tx ...
- activiti5.13 框架 数据库表结构说明
1.结构设计 1.1. 逻辑结构设计 Activiti使用到的表都是ACT_开头的. ACT_RE_*: 'RE'表示repository(存储),RepositoryService接口所操作的 ...
- OSPF多区域的进阶强化版
OSPF多区域 1.OSPF多区域原理 2.末梢区域配置 1.生成OSPF多区域的的原因:改善网络的可扩展性,快速收敛. OSPF的三种通信量:a域内通信量(单个区域内的路由器之间交换数据包构成的通信 ...
- 范数||x||(norm)笔记
1. 范数的含义和定义 范数是具有"长度"概念的函数.在线性代数.泛函分析及相关领域,是一个函数,它为向量空间内的所有向量赋予非零的正的长度或大小.另一方面,半范数可以为非零的向量 ...
- Scala变量和数据类型
一.注释及代码规范 Scala的注释和Java中完全相同:单行注释:// .多行注释:/* */ 以及文档注释:/** */: 使用tab操作,实现缩进,默认整体向右边移动,用shift+tab整 ...
- java+selenium脚本编写规范
2. 源文件规范 2.1 文件名 源文件以最顶层的类名来命名,大小写敏感,文件扩展名为.java 2.2 文件编码 UTF-8 源文件要求编码格式为UTF-8 2.3 源文件结 ...
- Vue.use初探
Vue.use 问题 相信很多人在用Vue使用别人的组件时,会用到 Vue.use(). 例如:Vue.use(VueRouter).Vue.use(MintUI). 但是用 axios时,就不需要用 ...
- 基于双TMS320C6678 DSP的3U VPX的信号处理平台
一.板卡概述 板卡由我公司自主研发,基于3U VPX架构,处理板包含两片TI DSP TMS320C6678芯片:一片Xilinx公司的Spartan XC3S200AN 配置芯片: DSP之间通过 ...