Mondriaan's Dream(POJ 2411状态压缩dp)
题意:用1*2的方格填充m*n的方格不能重叠,问有多少种填充方法
分析:dp[i][j]表示i行状态为j时的方案数,对于j,0表示该列竖放(影响下一行的该列),1表示横放成功(影响下一列)或上一列竖放成功。状态转移时,枚举每一行可能的状态上一行取反得下一行能放的状态。
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <queue>
#include <stack>
#include <cstdio>
#include <vector>
#include <string>
#include <cctype>
#include <complex>
#include <cassert>
#include <utility>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
typedef pair<int,int> PII;
typedef long long ll;
#define lson l,m,rt<<1
#define pi acos(-1.0)
#define rson m+1,r,rt<<11
#define All 1,N,1
#define read freopen("in.txt", "r", stdin)
const ll INFll = 0x3f3f3f3f3f3f3f3fLL;
const int INF= 0x7ffffff;
const int mod = 1000000007;
int n,m;
ll dp[15][1<<11],x;
//枚举可能的状态
void dfs(int i,int j,int p){
if(p==m){
dp[i][j]+=x;
return;
}
dfs(i,j,p+1);
if(p+2<=m&&!(j&(1<<p))&&!(j&(1<<(p+1))))
dfs(i,(j|(1<<p)|(1<<(p+1))),p+2);
}
void solve(){
memset(dp,0,sizeof(dp));
x=1;
dfs(1,0,0);
ll cas=(1<<m);
//x为上一行可能的方案总数
for(int i=2;i<=n;++i){
for(int j=0;j<cas;++j){
if(dp[i-1][j]){
x=dp[i-1][j];
dfs(i,~j&(cas-1),0);
}
}
}
printf("%I64d\n",dp[n][cas-1]);
}
int main()
{
while(~scanf("%d%d",&n,&m)){
if(n==0&&m==0)break;
solve();
}
return 0;
}
Mondriaan's Dream(POJ 2411状态压缩dp)的更多相关文章
- poj 2411 状态压缩dp
思路:将每一行看做一个二进制位,那么所有的合法状态为相邻为1的个数一定要为偶数个.这样就可以先把所有的合法状态找到.由于没一层的合法状态都是一样的,那么可以用一个数组保存.由第i-1行到第i行的状态转 ...
- Mondriaan's Dream POJ - 2411
Mondriaan's Dream POJ - 2411 可以用状压dp,但是要打一下表.暴力枚举行.这一行的状态.上一行的状态,判断如果上一行的状态能转移到这一行的状态就转移. 状态定义:ans[i ...
- POJ 1185 状态压缩DP(转)
1. 为何状态压缩: 棋盘规模为n*m,且m≤10,如果用一个int表示一行上棋子的状态,足以表示m≤10所要求的范围.故想到用int s[num].至于开多大的数组,可以自己用DFS搜索试试看:也可 ...
- Mondriaan's Dream - POJ 2411(状态压缩)
题目大意:有一些1*2的矩形,现在用这些小矩形覆盖M*N的大矩形,不能重复覆盖,并且要覆盖完全,求有多少种覆盖方式. 分析:可以使用1和0两种状态来表示这个位置有没有放置,1表示放置,0表示没有放置, ...
- POJ 1185 状态压缩DP 炮兵阵地
题目直达车: POJ 1185 炮兵阵地 分析: 列( <=10 )的数据比较小, 一般会想到状压DP. Ⅰ.如果一行10全个‘P’,满足题意的状态不超过60种(可手动枚举). Ⅱ.用DFS ...
- poj 2923(状态压缩dp)
题意:就是给了你一些货物的重量,然后给了两辆车一次的载重,让你求出最少的运输次数. 分析:首先要从一辆车入手,搜出所有的一次能够运的所有状态,然后把两辆车的状态进行合并,最后就是解决了,有两种方法: ...
- poj 2688 状态压缩dp解tsp
题意: 裸的tsp. 分析: 用bfs求出随意两点之间的距离后能够暴搜也能够用next_permutation水,但效率肯定不如状压dp.dp[s][u]表示从0出发訪问过s集合中的点.眼下在点u走过 ...
- poj 3254 状态压缩DP
思路:把每行的数当做是一个二进制串,0不变,1变或不变,找出所有的合法二进制形式表示的整数,即相邻不同为1,那么第i-1行与第i行的状态转移方程为dp[i][j]+=dp[i-1][k]: 这个方程得 ...
- POJ 2411 状态压缩递,覆盖方案数
无非就是横着放与竖着放,状态中用1表示覆盖,0表示未覆盖. #include <iostream> #include <vector> #include <algorit ...
随机推荐
- 李洪强漫谈iOS开发[C语言-039]-剪刀石头布
李洪强漫谈iOS开发[C语言-039]-剪刀石头布
- 【Linux高频命令专题(7)】rm
简述 rm是常用的命令,该命令的功能为删除一个目录中的一个或多个文件或目录,它也可以将某个目录及其下的所有文件及子目录均删除.对于链接文件,只是删除了链接,原有文件均保持不变. 命令格式 rm [选项 ...
- 只有innoDB才允许使用外键
1.只有InnoDB引擎才允许使用外键,所以,我们的数据表必须使用InnoDB引擎. 2.注意: 1.必须使用InnoDB引擎: 2.外键必须建立索引(INDEX): 3.外键绑定关系这里使用了“ O ...
- 企业用户2T(含秒传),普通用户20G
周鸿祎一定要看的建议(要求置顶):可以解决本次云盘事件的建议!!! 2016-10-23 20:23 | 复制链接 | 淘帖 461334 本帖最后由 cqthxin 于 2016-10-23 20: ...
- FastDFS_v5.05安装配置
废话不多讲,启动FastDFS文件服务器的命令是 #/usr/bin/fdfs_trackerd /etc/fdfs/tracker.conf #/usr/bin/fdfs_storaged /etc ...
- 机器学习 —— 概率图模型(Homework: StructuredCPD)
Week2的作业主要是关于概率图模型的构造,主要任务可以分为两个部分:1.构造CPD;2.构造Graph.对于有向图而言,在获得单个节点的CPD之后就可依据图对Combine CPD进行构造.在获得C ...
- Android的NDK开发(4)————JNI数据结构之JNINativeMethod
转至:http://blog.csdn.net/conowen/article/details/7524744 1.JNINativeMethod 结构体的官方定义 typedef struct { ...
- $.post()
定义和用法 post() 方法通过 HTTP POST 请求从服务器载入数据. jQuery.post(url,data,success(data, textStatus, jqXHR),dataTy ...
- How to Determine the Version of Oracle XML Publisher for Oracle E-Business Suite 11i and Release 12 (Doc ID 362496.1)
Modified: 29-Mar-2014 Type: HOWTO In this DocumentGoal Solution 1. Based upon an output file gen ...
- Android开发之获取系统管理权限,即DevicePolicyManager和DeviceAdminReceiver的使用
参考:http://www.cnblogs.com/androidez/archive/2013/02/17/2915020.html 1.创建AdminReceiver,继承DeviceAdminR ...