题目

思路:edit(i, j),它表示第一个字符串的长度为i的子串到第二个字符串的长度为j的子串的编辑距离。

有如下动态规划公式:

  • if i == 0 且 j == 0,edit(i, j) = 0
  • if i == 0 且 j > 0,edit(i, j) = j
  • if i > 0 且j == 0,edit(i, j) = i
  • if i ≥ 1  且 j ≥ 1 ,edit(i, j) == min{ edit(i-1, j) + 1, edit(i, j-1) + 1, edit(i-1, j-1) + f(i, j) },当第一个字符串的第i个字符不等于第二个字符串的第j个字符时,f(i, j) = 1;否则,f(i, j) = 0。
  •  #include <iostream>
    #include <cstring>
    #include <cstdlib>
    #include <cmath>
    #include <cstdio>
    #include <algorithm>
    using namespace std;
    const int maxn = +;
    char a[maxn], b[maxn];
    int d[maxn][maxn];
    int _min(int a, int b)
    {
    return a>b ? b:a;
    } int main()
    {
    int i, j, len_a, len_b, x;
    while(cin>>a>>b)
    {
    len_a = strlen(a);
    len_b = strlen(b);
    d[][] = ;
    for(i = ; i <= len_a; i++)
    d[i][] = i;
    for(j = ; j <= len_b; j++)
    d[][j] = j;
    for(i = ; i <= len_a; i++)
    for(j = ; j <= len_b; j++)
    {
    x = ;
    d[i][j] = _min(d[i-][j] + , d[i][j-] + );
    if(a[i-] != b[j-])
    x = ;
    d[i][j] = _min(d[i][j], d[i-][j-] + x);
    }
    cout<<d[len_a][len_b]<<endl;
    }
    return ;
    }

sdut 1728 编辑距离问题( dp )的更多相关文章

  1. Codeforces 56D Changing a String 编辑距离 记忆dp

    主题链接:点击打开链接 编辑距离.,== 一边dp虽然录制前体累,,依然是dp #include<iostream> #include<cstdio> #include< ...

  2. 51nod 1183 - 编辑距离 - [简单DP][编辑距离问题][Levenshtein距离问题]

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183 编辑距离,又称Levenshtein距离(也叫做Edi ...

  3. 编辑距离 区间dp

    题目描述 设A和B是两个字符串.我们要用最少的字符操作次数,将字符串A转换为字符串B.这里所说的字符操作共有三种: 1.删除一个字符: 2.插入一个字符: 3.将一个字符改为另一个字符: !皆为小写字 ...

  4. [luoguP2758] 编辑距离(DP)

    传送门 f[i][j] 表示第一串前 i 个到第二串前 j 个的最小编辑距离 f[i][j] = f[i - 1][j - 1] (s1[i] == s2[j]) f[i][j] = min(f[i ...

  5. leetcode 72.编辑距离(dp)

    链接:https://leetcode-cn.com/problems/edit-distance/submissions/ 设dp[i][j]表示串s1前i个字符变换成串s2前j个字符所需要的最小操 ...

  6. LeetCode 编辑距离(DP)

    题目 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替换一个字符 思路 定 ...

  7. 编辑距离算法-DP问题

    Levenshtein Distance The Levenshtein distance is a string metric for measuring the difference betwee ...

  8. POJ 3356 AGTC(DP求字符串编辑距离)

    给出两个长度小于1000的字符串,有三种操作,插入一个字符,删除一个字符,替换一个字符. 问A变成B所需的最少操作数(即编辑距离) 考虑DP,可以用反证法证明依次从头到尾对A,B进行匹配是不会影响答案 ...

  9. SDUT 1225-编辑距离(串型dp)

    编辑距离 Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描写叙述 如果字符串的基本操作仅为:删除一个字符.插入一个字符和将一个字符改动 ...

随机推荐

  1. nodejs Q.js promise

    var Q = require("q"); documentation for Qhttps://github.com/kriskowal/qhttps://github.com/ ...

  2. android 开启或者隐藏软键盘

    一. 隐藏软键盘方法一(注:此方法本人使用时发现isActivie()失效,建议还是用其他方法..): InputMethodManager imm = (InputMethodManager)get ...

  3. linux 删除某种规则命名的文件

    由于android开发需要删除以IMG_开头命名的图片文件,因此用到此命令 命令格式: rm IMG_*

  4. 视频FMS服务器带宽成本分析

    一.现状 调查了一下,主要有两种主流方式,WebRTC或者Flash. 1. WebRTC(不支持IE浏览器,已排除):网页实时通信(英语:Web Real-Time Communication)的缩 ...

  5. html+css学习笔记 4[定位]

    如何让图1中的div2移动到如图2上的位置: 思路:哪些css命令能够影响盒子显示的位置呢? relative相对定位/定位偏移量 position:relative;  相对定位         a ...

  6. nenu contest

    http://vjudge.net/vjudge/contest/view.action?cid=54393#overview A n^2能过 对第二个n我二分了一下,快了一点点,nlogn #inc ...

  7. uva 11489

    简单博弈 #include <cstdio> #include <cstdlib> #include <cmath> #include <map> #i ...

  8. iOS 通过代码关闭应用程序

    //-------------------------------- 退出程序 -----------------------------------------// - (void)exitAppl ...

  9. What is Object Oriented Design? (OOD)

    Object Oriented Design is the concept that forces programmers to plan out their code in order to hav ...

  10. G家二面

    题目都很基本,都属于听说过但是不会做的…都是操作系统,compiler的概念题… 概念题郁闷就郁闷在不会就是不会,就算能扯两句也会被问倒… 算法就一个,pow(x, y),5分钟不到…… 不是听说G家 ...