A、创建模式

  首先,简单工厂模式不属于24种涉及模式。

A0、简单工厂模式

  简单工厂模式,分为三种:普通简单工厂、多方法简单工厂、静态方法简单工厂。

  

A01、普通

  就是建立一个工厂类,对实现了同一接口的一些类进行实例的创建。首先看下关系图:

举例如下:(我们举一个发送邮件和短信的例子)

  首先,创建二者的共同接口:

    public interface ISender
{
string Send();
}

 其次,创建实现类:

    public class EmailSender:ISender
{
public string Send()
{
return "这里发送邮件!";
}
}
    public class SmsSender:ISender
{
public string Send()
{
return "这里发送短信!";
}
}

  最后,建工厂类:

    public class SenderFactory
{
public ISender GetSenderByType(string type)
{
ISender sender = null;
switch (type)
{
case "email":
sender = new EmailSender();
break;
case "sms":
sender = new SmsSender();
break;
default:
sender = null;
break;
}
return sender;
}
}

  测试如下:

    class Program
{
static void Main(string[] args)
{
SenderFactory fac = new SenderFactory();
ISender sender = fac.GetSenderByType("email");
if (sender == null)
{
Console.Write("类型不正确!");
}
string strRel = sender.Send();
Console.Write(strRel);
}
}

  输出:这里发送邮件!

A02、多个方法

  多方法简单工厂是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式是提供多个工厂方法,分别创建对象。关系图:

  将上面的代码做下修改,改动下SendFactory类就行,如下:

    public class SenderFactory
{
public ISender GetEmailSender()
{
ISender sender = new EmailSender();
return sender;
} public ISender GetSmsSender()
{
ISender sender = new SmsSender();
return sender;
}
}

  测试类如下:

    class Program
{
static void Main(string[] args)
{
SenderFactory fac = new SenderFactory();
ISender sender = fac.GetEmailSender();
string strRel = sender.SendMessage();
Console.Write(strRel);
}
}

  输出:这里发送邮件!

A03、多个静态方法

  将上面的多个工厂方法模式里的方法置为静态的,不需要创建实例,直接调用即可。

  public class SenderFactory
{
public static ISender GetEmailSender()
{
ISender sender = new EmailSender();
return sender;
} public static ISender GetSmsSender()
{
ISender sender = new SmsSender();
return sender;
}
}
    class Program
{
static void Main(string[] args)
{
ISender sender = SenderFactory.GetEmailSender();
string strRel = sender.SendMessage();
Console.Write(strRel);
}
}

  输出:SenderFactory

  总体来说,简单工厂模式适合:凡是出现了大量的产品需要创建,并且具有共同的接口时,可以通过工厂方法模式进行创建。在以上的三种模式中,第一种如果传入的字符串有误,不能正确创建对象,第三种相对于第二种,不需要实例化工厂类,所以,大多数情况下,我们会选用第三种——静态简单工厂方法模式。

A1、工厂方法模式(Factory Method)

  简单工厂模式有一个问题就是,类的创建依赖工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了开闭原则。所以,就有了工厂方法模式,创建一个工厂接口和创建多个工厂实现类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。

  定义:工厂方法模式(Factory Method),定义一个用于创建对象的接口,让子类决定实例化哪一个类。工厂方法使一个类的实例化延迟到其子类。

Factory Method Mode 结构图

  将简单工厂模式的工厂类修改如下:

    public interface IFactory
{
ISender GetSender();
}

  两个实现类:

   public class EmailSenderFactory:IFactory
{
public ISender GetSender()
{
ISender sender = new EmailSender();
return sender;
}
}
  public class SmsSenderFactory : IFactory
{
public ISender GetSender()
{
ISender sender = new SmsSender();
return sender;
}
}

  测试如下:

        static void Main(string[] args)
{
IFactory fac = new EmailSenderFactory();
ISender sender = fac.GetSender();
string strRel = sender.SendMessage();
Console.Write(strRel);
}

  注意:工厂方法模式实现时,客户端需要决定实例化哪一个工厂来实现运算 类,选择判断的问题还是存在的,也就是说,工厂方法把简单工厂的内部逻辑判断移到了客户端代码来 进行。你想要加功能,本来是改工厂类的,而现在是修改客户端。

2、抽象工厂模式

定义:抽象工厂模式(Abstract Factory),提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。

  工厂方法模式和抽象工厂模式不好分清楚,他们的区别如下:

  (1)工厂方法模式:

  一个抽象产品类,可以派生出多个具体产品类。

  一个抽象工厂类,可以派生出多个具体工厂类。

  每个具体工厂类只能创建一个具体产品类的实例。

  (2)抽象工厂模式:

  多个抽象产品类,每个抽象产品类可以派生出多个具体产品类。

  一个抽象工厂类,可以派生出多个具体工厂类。

  每个具体工厂类可以创建多个具体产品类的实例,也就是创建的是一个产品线下的多个产品。  

  区别: 工厂方法模式只有一个抽象产品类,而抽象工厂模式有多个。 工厂方法模式的具体工厂类只能创建一个具体产品类的实例,而抽象工厂模式可以创建多个。  

  工厂方法创建 "一种" 产品,他的着重点在于"怎么创建",也就是说如果你开发,你的大量代码很可能围绕着这种产品的构造,初始化这些细节上面。也因为如此,类似的产品之间有很多可以复用的特征,所以会和模版方法相随。 
  抽象工厂需要创建一系列产品,着重点在于"创建哪些"产品上,也就是说,如果你开发,你的主要任务是划分不同差异的产品线,并且尽量保持每条产品线接口一致,从而可以从同一个抽象工厂继承。

  对于C#来说,你能见到的大部分抽象工厂模式都是这样的:

  它的里面是一堆工厂方法,每个工厂方法返回某种类型的对象。

  比如说工厂可以生产鼠标和键盘。那么抽象工厂的实现类(它的某个具体子类)的对象都可以生产鼠标和键盘,但可能工厂A生产的是罗技的键盘和鼠标,工厂B是微软的。

这样A和B就是工厂,对应于抽象工厂;
每个工厂生产的鼠标和键盘就是产品,对应于工厂方法;

用了工厂方法模式,你替换生成键盘的工厂方法,就可以把键盘从罗技换到微软。但是用了抽象工厂模式,你只要换家工厂,就可以同时替换鼠标和键盘一套。如果你要的产品有几十个,当然用抽象工厂模式一次替换全部最方便(这个工厂会替你用相应的工厂方法)

所以说抽象工厂就像工厂,而工厂方法则像是工厂的一种产品生产线

A3、单例模式(Singleton

单例对象(Singleton)是一种常用的设计模式。在Java应用中,单例对象能保证在一个JVM中,该对象只有一个实例存在。这样的模式有几个好处:

1、某些类创建比较频繁,对于一些大型的对象,这是一笔很大的系统开销。

2、省去了new操作符,降低了系统内存的使用频率,减轻GC压力。

3、有些类如交易所的核心交易引擎,控制着交易流程,如果该类可以创建多个的话,系统完全乱了。(比如一个军队出现了多个司令员同时指挥,肯定会乱成一团),所以只有使用单例模式,才能保证核心交易服务器独立控制整个流程。

首先我们写一个简单的单例类:

  1. public class Singleton {
  2. /* 持有私有静态实例,防止被引用,此处赋值为null,目的是实现延迟加载 */
  3. private static Singleton instance = null;
  4. /* 私有构造方法,防止被实例化 */
  5. private Singleton() {
  6. }
  7. /* 静态工程方法,创建实例 */
  8. public static Singleton getInstance() {
  9. if (instance == null) {
  10. instance = new Singleton();
  11. }
  12. return instance;
  13. }
  14. /* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */
  15. public Object readResolve() {
  16. return instance;
  17. }
  18. }

这个类可以满足基本要求,但是,像这样毫无线程安全保护的类,如果我们把它放入多线程的环境下,肯定就会出现问题了,如何解决?我们首先会想到对getInstance方法加synchronized关键字,如下:

  1. public static synchronized Singleton getInstance() {
  2. if (instance == null) {
  3. instance = new Singleton();
  4. }
  5. return instance;
  6. }

但是,synchronized关键字锁住的是这个对象,这样的用法,在性能上会有所下降,因为每次调用getInstance(),都要对对象上锁,事实上,只有在第一次创建对象的时候需要加锁,之后就不需要了,所以,这个地方需要改进。我们改成下面这个:

  1. public static Singleton getInstance() {
  2. if (instance == null) {
  3. synchronized (instance) {
  4. if (instance == null) {
  5. instance = new Singleton();
  6. }
  7. }
  8. }
  9. return instance;
  10. }

似乎解决了之前提到的问题,将synchronized关键字加在了内部,也就是说当调用的时候是不需要加锁的,只有在instance为null,并创建对象的时候才需要加锁,性能有一定的提升。但是,这样的情况,还是有可能有问题的,看下面的情况:在Java指令中创建对象和赋值操作是分开进行的,也就是说instance = new Singleton();语句是分两步执行的。但是JVM并不保证这两个操作的先后顺序,也就是说有可能JVM会为新的Singleton实例分配空间,然后直接赋值给instance成员,然后再去初始化这个Singleton实例。这样就可能出错了,我们以A、B两个线程为例:

a>A、B线程同时进入了第一个if判断

b>A首先进入synchronized块,由于instance为null,所以它执行instance = new Singleton();

c>由于JVM内部的优化机制,JVM先画出了一些分配给Singleton实例的空白内存,并赋值给instance成员(注意此时JVM没有开始初始化这个实例),然后A离开了synchronized块。

d>B进入synchronized块,由于instance此时不是null,因此它马上离开了synchronized块并将结果返回给调用该方法的程序。

e>此时B线程打算使用Singleton实例,却发现它没有被初始化,于是错误发生了。

所以程序还是有可能发生错误,其实程序在运行过程是很复杂的,从这点我们就可以看出,尤其是在写多线程环境下的程序更有难度,有挑战性。我们对该程序做进一步优化:

  1. private static class SingletonFactory{
  2. private static Singleton instance = new Singleton();
  3. }
  4. public static Singleton getInstance(){
  5. return SingletonFactory.instance;
  6. }

实际情况是,单例模式使用内部类来维护单例的实现,JVM内部的机制能够保证当一个类被加载的时候,这个类的加载过程是线程互斥的。这样当我们第一次调用getInstance的时候,JVM能够帮我们保证instance只被创建一次,并且会保证把赋值给instance的内存初始化完毕,这样我们就不用担心上面的问题。同时该方法也只会在第一次调用的时候使用互斥机制,这样就解决了低性能问题。这样我们暂时总结一个完美的单例模式:

  1. public class Singleton {
  2. /* 私有构造方法,防止被实例化 */
  3. private Singleton() {
  4. }
  5. /* 此处使用一个内部类来维护单例 */
  6. private static class SingletonFactory {
  7. private static Singleton instance = new Singleton();
  8. }
  9. /* 获取实例 */
  10. public static Singleton getInstance() {
  11. return SingletonFactory.instance;
  12. }
  13. /* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */
  14. public Object readResolve() {
  15. return getInstance();
  16. }
  17. }

其实说它完美,也不一定,如果在构造函数中抛出异常,实例将永远得不到创建,也会出错。所以说,十分完美的东西是没有的,我们只能根据实际情况,选择最适合自己应用场景的实现方法。也有人这样实现:因为我们只需要在创建类的时候进行同步,所以只要将创建和getInstance()分开,单独为创建加synchronized关键字,也是可以的:

  1. public class SingletonTest {
  2. private static SingletonTest instance = null;
  3. private SingletonTest() {
  4. }
  5. private static synchronized void syncInit() {
  6. if (instance == null) {
  7. instance = new SingletonTest();
  8. }
  9. }
  10. public static SingletonTest getInstance() {
  11. if (instance == null) {
  12. syncInit();
  13. }
  14. return instance;
  15. }
  16. }

考虑性能的话,整个程序只需创建一次实例,所以性能也不会有什么影响。

补充:采用"影子实例"的办法为单例对象的属性同步更新

  1. public class SingletonTest {
  2. private static SingletonTest instance = null;
  3. private Vector properties = null;
  4. public Vector getProperties() {
  5. return properties;
  6. }
  7. private SingletonTest() {
  8. }
  9. private static synchronized void syncInit() {
  10. if (instance == null) {
  11. instance = new SingletonTest();
  12. }
  13. }
  14. public static SingletonTest getInstance() {
  15. if (instance == null) {
  16. syncInit();
  17. }
  18. return instance;
  19. }
  20. public void updateProperties() {
  21. SingletonTest shadow = new SingletonTest();
  22. properties = shadow.getProperties();
  23. }
  24. }

通过单例模式的学习告诉我们:

1、单例模式理解起来简单,但是具体实现起来还是有一定的难度。

2、synchronized关键字锁定的是对象,在用的时候,一定要在恰当的地方使用(注意需要使用锁的对象和过程,可能有的时候并不是整个对象及整个过程都需要锁)。

到这儿,单例模式基本已经讲完了,结尾处,笔者突然想到另一个问题,就是采用类的静态方法,实现单例模式的效果,也是可行的,此处二者有什么不同?

首先,静态类不能实现接口。(从类的角度说是可以的,但是那样就破坏了静态了。因为接口中不允许有static修饰的方法,所以即使实现了也是非静态的)

其次,单例可以被延迟初始化,静态类一般在第一次加载是初始化。之所以延迟加载,是因为有些类比较庞大,所以延迟加载有助于提升性能。

再次,单例类可以被继承,他的方法可以被覆写。但是静态类内部方法都是static,无法被覆写。

最后一点,单例类比较灵活,毕竟从实现上只是一个普通的Java类,只要满足单例的基本需求,你可以在里面随心所欲的实现一些其它功能,但是静态类不行。从上面这些概括中,基本可以看出二者的区别,但是,从另一方面讲,我们上面最后实现的那个单例模式,内部就是用一个静态类来实现的,所以,二者有很大的关联,只是我们考虑问题的层面不同罢了。两种思想的结合,才能造就出完美的解决方案,就像HashMap采用数组+链表来实现一样,其实生活中很多事情都是这样,单用不同的方法来处理问题,总是有优点也有缺点,最完美的方法是,结合各个方法的优点,才能最好的解决问题!

A4、建造者模式(Builder)

  将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示。

  主要是用于创建一些复杂的对象,这些对象内部构建间的建造顺序通常是稳定的,但对象内部 的构建通常面临着复杂的变化。

  建造者模式的好处就是使得建造代码与表示代码分离,由于建造者隐藏了该产品是如 何组装的,所以若需要改变一个产品的内部表示,只需要再定义一个具体的建造者就可以了。

A5、原型模式(Prototype)

原型模式虽然是创建型的模式,但是与工程模式没有关系,从名字即可看出,该模式的思想就是将一个对象作为原型,对其进行复制、克隆,产生一个和原对象类似的新对象。本小结会通过对象的复制,进行讲解。在Java中,复制对象是通过clone()实现的,先创建一个原型类:

  1. public class Prototype implements Cloneable {
  2. public Object clone() throws CloneNotSupportedException {
  3. Prototype proto = (Prototype) super.clone();
  4. return proto;
  5. }
  6. }

很简单,一个原型类,只需要实现Cloneable接口,覆写clone方法,此处clone方法可以改成任意的名称,因为Cloneable接口是个空接口,你可以任意定义实现类的方法名,如cloneA或者cloneB,因为此处的重点是super.clone()这句话,super.clone()调用的是Object的clone()方法,而在Object类中,clone()是native的,具体怎么实现,我会在另一篇文章中,关于解读Java中本地方法的调用,此处不再深究。在这儿,我将结合对象的浅复制和深复制来说一下,首先需要了解对象深、浅复制的概念:

浅复制:将一个对象复制后,基本数据类型的变量都会重新创建,而引用类型,指向的还是原对象所指向的。

深复制:将一个对象复制后,不论是基本数据类型还有引用类型,都是重新创建的。简单来说,就是深复制进行了完全彻底的复制,而浅复制不彻底。

此处,写一个深浅复制的例子:

  1. public class Prototype implements Cloneable, Serializable {
  2. private static final long serialVersionUID = 1L;
  3. private String string;
  4. private SerializableObject obj;
  5. /* 浅复制 */
  6. public Object clone() throws CloneNotSupportedException {
  7. Prototype proto = (Prototype) super.clone();
  8. return proto;
  9. }
  10. /* 深复制 */
  11. public Object deepClone() throws IOException, ClassNotFoundException {
  12. /* 写入当前对象的二进制流 */
  13. ByteArrayOutputStream bos = new ByteArrayOutputStream();
  14. ObjectOutputStream oos = new ObjectOutputStream(bos);
  15. oos.writeObject(this);
  16. /* 读出二进制流产生的新对象 */
  17. ByteArrayInputStream bis = new ByteArrayInputStream(bos.toByteArray());
  18. ObjectInputStream ois = new ObjectInputStream(bis);
  19. return ois.readObject();
  20. }
  21. public String getString() {
  22. return string;
  23. }
  24. public void setString(String string) {
  25. this.string = string;
  26. }
  27. public SerializableObject getObj() {
  28. return obj;
  29. }
  30. public void setObj(SerializableObject obj) {
  31. this.obj = obj;
  32. }
  33. }
  34. class SerializableObject implements Serializable {
  35. private static final long serialVersionUID = 1L;
  36. }
 
要实现深复制,需要采用流的形式读入当前对象的二进制输入,再写出二进制数据对应的对象。
 

Design Mode 之 创建模式的更多相关文章

  1. 《JavaScript模式》第5章 对象创建模式

    @by Ruth92(转载请注明出处) 第5章:对象创建模式 JavaScript 是一种简洁明了的语言,并没有其他语言中经常使用的一些特殊语法特征,如 命名空间.模块.包.私有属性 以及 静态成员 ...

  2. [JAVA设计模式]第二部分:创建模式

    声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...

  3. 《Javascript模式》之对象创建模式读书笔记

    引言: 在javascript中创建对象是很容易的,可以使用对象字面量或者构造函数或者object.creat.在接下来的介绍中,我们将越过这些方法去寻求一些其他的对象创建模式. 我们知道js是一种简 ...

  4. 设计模式---对象创建模式之原型模式(prototype)

    一:概念 原型模式(Prototype Pattern) 实际上就是动态抽取当前对象运行时的状态 Prototype模式是一种对象创建型模式,它采取复制原型对象的方法来创建对象的实例.使用Protot ...

  5. 设计模式---对象创建模式之工厂方法模式(Factory Method)

    前提:“对象创建”模式 通过“对象创建”模式绕开new,来避免对象创建(new)过程中所导致的紧耦合(依赖具体类),从而支持对象创建的稳定.它是接口抽象之后的第一步工作. 典型模式(表现最为突出) 工 ...

  6. 创建模式--单例模式Singleton(JAVA)

    创建模式之单例模式        在面试时经常会有人问单例模式,单例模式是在整个系统运行中仅且仅有一个实例,在被调用.我们熟知的Calendar就是这种,        Calendar.newIns ...

  7. C++设计模式 之 “对象创建”模式:Factory Method、Abstract Factory、Prototype、Builder

    part 0 “对象创建”模式 通过“对象创建” 模式绕开new,来避免对象创建(new)过程中所导致的紧耦合(依赖具体类),从而支持对象创建的稳定.它是接口抽象之后的第一步工作. 典型模式 Fact ...

  8. python设计模式之常用创建模式总结(二)

    前言 设计模式的创建模式终极目标是如何使用最少量最少需要修改的代码,传递最少的参数,消耗系统最少的资源创建可用的类的实例对象. 系列文章 python设计模式之单例模式(一) python设计模式之常 ...

  9. 深入理解JavaScript系列(47):对象创建模式(上篇)

    介绍 本篇主要是介绍创建对象方面的模式,利用各种技巧可以极大地避免了错误或者可以编写出非常精简的代码. 模式1:命名空间(namespace) 命名空间可以减少全局命名所需的数量,避免命名冲突或过度. ...

随机推荐

  1. 原生JS默认设置默认值的写法

    json=json||{};json.type=json.type||'get';json.data=json.data||{};json.time=json.time||2000;

  2. Swift 可选值(Optional Values)介绍

    Optional的定义 Optional也是Objective-C没有的数据类型,是苹果引入到Swift语言中的全新类型,它的特点就和它的名字一样:可以有值,也可以没有值,当它没有值时,就是nil.此 ...

  3. js 控制 table style css

    var table = objj.getElementsByTagName('table'); alert(table[i].width); if(table==null) return; for(v ...

  4. 遇见了这个问题:App.config提示错误“配置系统未能初始化”

    解决办法查找之后居然是这样的,受教了,记录一下 解决: "如果配置文件中包含 configSections 元素,则 configSections 元素必须是 configuration 元 ...

  5. 无责任Windows Azure SDK .NET开发入门篇三[使用Azure AD 管理用户信息]

    三.使用Azure AD管理用户信息 在上一章我们采用OpenID的方案和Azure AD交互进行身份验证,本章节我们继续了解如何在Azure AD中创建用户,列出用户信息,修改用户信息和删除用户信息 ...

  6. __declspec,__cdecl,__stdcall区别和作用

    _cdecl和__stdcall都是函数调用规范(还有一个__fastcall),规定了参数出入栈的 顺序和方法,如果只用VC编程的话可以不用关心,但是要在C++和Pascal等其他语言通信的时候就要 ...

  7. Immutable.js尝试(node.js勿入)

    最近做一些复杂html常常需要在页面做一些数据处理,常常在想如果 js有list 这种数据结构多少,今天逛github时 发现有Immutable.js 这个项目https://github.com/ ...

  8. Codeforces Round #312 (Div. 2) C. Amr and Chemistry 暴力

    C. Amr and Chemistry Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/558/ ...

  9. 搭建Spring + SpringMVC + Mybatis框架之一(创建项目)

    创建项目 用maven管理项目很方便,不用手动下载jar包,直接在pom.xml配置文件中,maven可以帮助我们自动下载,非常方便 新建一个web project,添加maven支持就可以了,这样创 ...

  10. 怎样基于android4.4.2的源代码和android-4.3.1_r1的驱动编译I9250的ROM

    怎样基于android4.4.2的源代码和android-4.3.1_r1的驱动编译I9250的ROM 作者:雨水  2014-05-04 联系方式:dennis.hu.cd at gmail.com ...