原文链接:http://www.gowhich.com/blog/147?utm_source=tuicool&utm_medium=referral

PS:结巴分词支持Python3

源码下载的地址:https://github.com/fxsjy/jieba

演示地址:http://jiebademo.ap01.aws.af.cm/

特点

1,支持三种分词模式:

a,精确模式,试图将句子最精确地切开,适合文本分析;
    b,全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
    c,搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。

2,支持繁体分词

3,支持自定义词典

安装

1,Python 2.x 下的安装

全自动安装:easy_install jieba 或者 pip install jieba
半自动安装:先下载http://pypi.python.org/pypi/jieba/ ,解压后运行python setup.py install
手动安装:将jieba目录放置于当前目录或者site-packages目录
通过import jieba 来引用

2,Python 3.x 下的安装

目前master分支是只支持Python2.x 的
Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k

git clone https://github.com/fxsjy/jieba.git
git checkout jieba3k
python setup.py install

算法实现:

基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG)
采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法

功能

功能 1):分词

jieba.cut方法接受两个输入参数: 1) 第一个参数为需要分词的字符串 2)cut_all参数用来控制是否采用全模式
    jieba.cut_for_search方法接受一个参数:需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
    注意:待分词的字符串可以是gbk字符串、utf-8字符串或者unicode
    jieba.cut以及jieba.cut_for_search返回的结构都是一个可迭代的generator,可以使用for循环来获得分词后得到的每一个词语(unicode),也可以用list(jieba.cut(...))转化为list
代码示例( 分词 )

#encoding=utf-8
import jieba
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print "Full Mode:", "/ ".join(seg_list)  # 全模式
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print "Default Mode:", "/ ".join(seg_list)  # 精确模式
seg_list = jieba.cut("他来到了网易杭研大厦")  # 默认是精确模式
print ", ".join(seg_list)
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造")  # 搜索引擎模式
print ", ".join(seg_list)

Output:
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
【精确模式】: 我/ 来到/ 北京/ 清华大学
【新词识别】:他, 来到, 了, 网易, 杭研, 大厦    (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)
【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造

功能 2) :添加自定义词典

开发者可以指定自己自定义的词典,以便包含jieba词库里没有的词。虽然jieba有新词识别能力,但是自行添加新词可以保证更高的正确率
用法:

jieba.load_userdict(file_name) # file_name为自定义词典的路径

词典格式和dict.txt一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略),用空格隔开
范例:
自定义词典:

云计算 5
李小福 2 nr
创新办 3 i
easy_install 3 eng
好用 300
韩玉赏鉴 3 nz

用法示例:

#encoding=utf-8
import sys
sys.path.append("../")
import jieba
jieba.load_userdict("userdict.txt")
import jieba.posseg as pseg test_sent = "李小福是创新办主任也是云计算方面的专家;"
test_sent += "例如我输入一个带“韩玉赏鉴”的标题,在自定义词库中也增加了此词为N类型"
words = jieba.cut(test_sent)
for w in words:
print w result = pseg.cut(test_sent) for w in result:
print w.word, "/", w.flag, ", ", print "\n========" terms = jieba.cut('easy_install is great')
for t in terms:
    print t
print '-------------------------'
terms = jieba.cut('python 的正则表达式是好用的')
for t in terms:
    print t

之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
"通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14

功能 3) :关键词提取

jieba.analyse.extract_tags(sentence,topK) #需要先import jieba.analyse

说明

setence为待提取的文本

topK为返回几个TF/IDF权重最大的关键词,默认值为20
代码示例 (关键词提取)

import sys
sys.path.append('../') import jieba
import jieba.analyse
from optparse import OptionParser USAGE = "usage: python extract_tags.py [file name] -k [top k]" parser = OptionParser(USAGE)
parser.add_option("-k", dest="topK")
opt, args = parser.parse_args() if len(args) < 1:
    print USAGE
    sys.exit(1) file_name = args[0] if opt.topK is None:
    topK = 10
else:
    topK = int(opt.topK) content = open(file_name, 'rb').read() tags = jieba.analyse.extract_tags(content, topK=topK) print ",".join(tags)

功能 4) : 词性标注

标注句子分词后每个词的词性,采用和ictclas兼容的标记法
用法示例

>>> import jieba.posseg as pseg
>>> words = pseg.cut("我爱北京天安门")
>>> for w in words:
...    print w.word, w.flag
...
我 r
爱 v
北京 ns
天安门 ns

功能 5) : 并行分词

原理:将目标文本按行分隔后,把各行文本分配到多个python进程并行分词,然后归并结果,从而获得分词速度的可观提升
基于python自带的multiprocessing模块,目前暂不支持windows
用法:

jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数
jieba.disable_parallel() # 关闭并行分词模式

例子:

import urllib2
import sys,time
import sys
sys.path.append("../../")
import jieba
jieba.enable_parallel(4) url = sys.argv[1]
content = open(url,"rb").read()
t1 = time.time()
words = list(jieba.cut(content)) t2 = time.time()
tm_cost = t2-t1 log_f = open("1.log","wb")
for w in words:
print >> log_f, w.encode("utf-8"), "/" , print 'speed' , len(content)/tm_cost, " bytes/second"

实验结果:在4核3.4GHz Linux机器上,对金庸全集进行精确分词,获得了1MB/s的速度,是单进程版的3.3倍。

其他词典

占用内存较小的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small
支持繁体分词更好的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big
下载你所需要的词典,然后覆盖jieba/dict.txt 即可或者用jieba.set_dictionary('data/dict.txt.big')

模块初始化机制的改变:lazy load (从0.28版本开始)

jieba采用延迟加载,"import jieba"不会立即触发词典的加载,一旦有必要才开始加载词典构建trie。如果你想手工初始jieba,也可以手动初始化。

import jieba
jieba.initialize()  # 手动初始化(可选)

在0.28之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径:

jieba.set_dictionary('data/dict.txt.big')

例子:

#encoding=utf-8
import sys
sys.path.append("../")
import jieba def cuttest(test_sent):
result = jieba.cut(test_sent)
print " ".join(result) def testcase():
cuttest("这是一个伸手不见五指的黑夜。我叫孙悟空,我爱北京,我爱Python和C++。")
cuttest("我不喜欢日本和服。")
cuttest("雷猴回归人间。")
cuttest("工信处女干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作")
cuttest("我需要廉租房")
cuttest("永和服装饰品有限公司")
cuttest("我爱北京天安门")
cuttest("abc")
cuttest("隐马尔可夫")
cuttest("雷猴是个好网站") if __name__ == "__main__":
testcase()
jieba.set_dictionary("foobar.txt")
print "================================"
testcase()

Python 结巴分词模块的更多相关文章

  1. python 结巴分词(jieba)详解

    文章转载:http://blog.csdn.net/xiaoxiangzi222/article/details/53483931 jieba “结巴”中文分词:做最好的 Python 中文分词组件 ...

  2. $好玩的分词——python jieba分词模块的基本用法

    jieba(结巴)是一个强大的分词库,完美支持中文分词,本文对其基本用法做一个简要总结. 安装jieba pip install jieba 简单用法 结巴分词分为三种模式:精确模式(默认).全模式和 ...

  3. python结巴分词SEO的应用详解

    结巴分词在SEO中可以应用于分析/提取文章关键词.关键词归类.标题重写.文章伪原创等等方面,用处非常多.     具体结巴分词项目:https://github.com/fxsjy/jieba    ...

  4. Python 结巴分词

    今天的任务是对txt文本进行分词,有幸了解到"结巴"中文分词,其愿景是做最好的Python中文分词组件.有兴趣的朋友请点这里. jieba支持三种分词模式: *精确模式,试图将句子 ...

  5. Python 结巴分词(1)分词

    利用结巴分词来进行词频的统计,并输出到文件中. 结巴分词github地址:结巴分词 结巴分词的特点: 支持三种分词模式: 精确模式,试图将句子最精确地切开,适合文本分析: 全模式,把句子中所有的可以成 ...

  6. python 结巴分词学习

    结巴分词(自然语言处理之中文分词器) jieba分词算法使用了基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能生成词情况所构成的有向无环图(DAG), 再采用了动态规划查找最大概率路径,找出基于 ...

  7. python 结巴分词简介以及操作

    中文分词库:结巴分词 文档地址:https://github.com/fxsjy/jieba 代码对 Python 2/3 均兼容 全自动安装:easy_install jieba 或者 pip in ...

  8. 转]python 结巴分词(jieba)学习

    原文  http://www.gowhich.com/blog/147 主题 中文分词Python 源码下载的地址:https://github.com/fxsjy/jieba 演示地址:http:/ ...

  9. python结巴分词余弦相似度算法实现

    过余弦相似度算法计算两个字符串之间的相关度,来对关键词进行归类.重写标题.文章伪原创等功能, 让你目瞪口呆.以下案例使用的母词文件均为txt文件,两种格式:一种内容是纯关键词的txt,每行一个关键词就 ...

随机推荐

  1. UVALive 3486/zoj 2615 Cells(栈模拟dfs)

    这道题在LA是挂掉了,不过还好,zoj上也有这道题. 题意:好大一颗树,询问父子关系..考虑最坏的情况,30w层,2000w个点,询问100w次,貌似连dfs一遍都会TLE. 安心啦,这肯定是一道正常 ...

  2. Linux likely unlikely

    /************************************************************************* * Linux likely unlikely * ...

  3. 视频捕捉全教程(vc+vfw)

    目 录 一. 视频捕获快速入门 二.基本的捕获设置 1.设置捕获速度: 2.设置终止捕获 3.捕获的时间限制 三.关于捕获窗口 1.创建一个AVICAP捕获窗口 2.将一个捕获窗口连接至捕获设备 3. ...

  4. Android自定义的webView——可实现的网页文本的复制

    package com.example.customlinearlayout.view; import android.app.ProgressDialog; import android.conte ...

  5. Android开发中如何调用摄像头的功能

    我们要调用摄像头的拍照功能,显然 第一步必须加入调用摄像头硬件的权限,拍完照后我们要将图片保存在SD卡中,必须加入SD卡读写权限,所以第一步,我们应该在Android清单文件中加入以下代码     & ...

  6. java web 学习十一(使用cookie进行会话管理)

    一.会话的概念 会话可简单理解为:用户开一个浏览器,点击多个超链接,访问服务器多个web资源,然后关闭浏览器,整个过程称之为一个会话. 有状态会话:一个同学来过教室,下次再来教室,我们会知道这个同学曾 ...

  7. 基于Fragment实现Tab的切换,滑出侧边栏

    最近在学习Fragment(碎片)这是android3.0以后提出的概念,很多pad上面的设置部分都是通过Fragment来实现的,先看看具体的效果吧(图一)  (图二) (图三)第一章图片是初始时的 ...

  8. 使ViewFlipper中的WebView实现手势效果

    使ViewFlipper中的WebView实现手势效果   今天写Blog阅读器的时候遇到了这个问题,把它分享给大家,让同样是新手们少走冤枉路始初写这个功能的时候,用过了好多方法,也耗了不少时间去研究 ...

  9. DBHelper (支持事务与数据库变更) z

    using System; using System.Data; using System.Data.Common; using Project.BaseFramework; using System ...

  10. C++ primer里的template用法

    来源:http://c.chinaitlab.com/cc/ccjq/200806/752604_2.html --  template 的用法    在程序设计当中经常会出现使用同种数据结构的不同实 ...