题目描述 Description

  你可能听说过的Fibonacci数和圆周率Pi。

  如果你让这两个概念合并,一个新的深奥的概念应运而生:Pibonacci数。

  这些数可以被定义为对于x>=0:

    如果0<=x<4,则P(x) = 1

    如果4<=x,则P(x) = P(x - 1) + P(x - pi)

  其中Pi = 3.1415926535897...在这个问题中,你被要求计算对于一个给定的非负整数x对应P(x)的值。

输入描述 Input Description

  一个非负整数x。

输出描述 Output Description

  一个正整数P(x)。

样例输入 Sample Input

11

样例输出 Sample Output

20

数据范围及提示 Data Size & Hint

数据范围 x<=30000

来源 ICPC 2001 F

好题啊

转化题意,给你一个数,你可以一次减去1,或者减去pi,求你有多少种方法把它减到<4(如果它本来就小于4,方案就是1种)

想法1

枚举1的个数算出pi的个数,这是pi结尾的,算组合数

枚举pi的个数算出1的个数这是1结尾的,算组合数

然后加起来

眼瞎,以为只有3000,高兴地交上去,RE了,我靠竟然有30000,怎么办呢

问了问VFleaking,他想了想,帮我找出了一个有巨大优化空间的地方

我求组合数是暴力求的,其实枚举的时候组合数的n,m都是比较接近的,所以记一个lastn和一个lastm每次只要乘几个除几个就行了

然后优化到了10000左右可以过,又卡住了

FVleaking找到了差不多的题http://acm.hit.edu.cn/hoj/problem/view?id=1385

范围是3000,多组数据,我就交了,AC了,于是我的信心倍增,但是还是不知道怎么过30000

然后下了一个C++AC代码(当时也只有C和C++的)

看了以后果然是常数比我好

直接枚举pi的个数为n

然后给剩下的空间加上一个pi,算出这个空间可以容下多少个1,个数为m

可以想象,加上一个pi,pi的个数还是原来枚举的那么多(因为这个空间加上这些pi和1肯定还没满)

所以讨论1摆放情况,因为有可能1结尾,但是超出范围,根本不需要这个1,但是没关系这个方案只计算了一次也只会计算这一次,所以方案数就是C(n+m,n)

然后加上前面那个优化,就可以AC了..........

 const
h=;
type
aa=array[..]of int64;
var
a,b:aa;
n:longint; procedure cheng(x:longint);
var
i:longint;
begin
for i:= to b[] do
b[i]:=b[i]*x;
for i:= to b[] do
begin
inc(b[i+],b[i]div h);
b[i]:=b[i]mod h;
end;
i:=b[]+;
while b[i]> do
begin
inc(b[]);
b[i+]:=b[i]div h;
b[i]:=b[i]mod h;
inc(i);
end;
end; procedure jia;
var
i:longint;
begin
for i:= to b[] do
inc(a[i],b[i]);
if b[]>a[] then a[]:=b[];
for i:= to a[] do
begin
inc(a[i+],a[i]div h);
a[i]:=a[i]mod h;
end;
i:=a[]+;
while a[i]> do
begin
inc(a[]);
inc(a[i+],a[i]div h);
a[i]:=a[i]mod h;
inc(i);
end;
end; procedure chu(x:longint);
var
i:longint;
begin
for i:=b[] downto do
begin
inc(b[i-],(b[i]mod x)*h);
b[i]:=b[i]div x;
end;
b[]:=b[]div x;
while (b[b[]]=)and(b[]>) do
dec(b[]);
end; procedure print;
var
i:longint;
k:int64;
begin
write(a[a[]]);
for i:=a[]- downto do
begin
k:=h div ;
while k> do
begin
if a[i]<k then write();
k:=k div ;
end;
write(a[i]);
end;
end; procedure main;
var
i,j,k,last:longint;
begin
read(n);
if n< then
begin
write();
halt;
end;
dec(n,);
a[]:=;
a[]:=;
i:=;
b[]:=;
b[]:=;
i:=;
j:=trunc(n+pi);
while i<=trunc((n+pi)/pi) do
begin
last:=j;
j:=trunc(n+pi-i*pi);
for k:=last- downto j+ do
begin
cheng(k+);
chu(i+k);
end;
cheng(j+);
chu(i);
inc(i);
jia;
end;
print;
end; begin
main;
end.

3150 Pibonacci数 - Wikioi的更多相关文章

  1. 【wikioi】1227 方格取数 2(费用流)

    http://www.wikioi.com/problem/1227 裸题,拆点,容量为1,费用为点权的负数(代表只能取一次).再在拆好的两个点连边,容量为oo,费用为0.(代表能取0) 然后向右和下 ...

  2. 【wikioi】1907 方格取数3(最大流+最大权闭合子图)

    http://www.wikioi.com/problem/1907/ 这题我一开始想到的是状压,看到n<=30果断放弃. 然后也想到了黑白染色,然后脑残了,没想到怎么连边. 很简单的一题 黑白 ...

  3. 【wikioi】1553 互斥的数(hash+set)

    http://wikioi.com/problem/1553/ 一开始我也知道用set来判a[i]/p是否在集合中,在的话就直接删掉. 但是我没有想到要排序,也没有想到当存在a,b使得a/p==b时到 ...

  4. [wikioi]数的划分

    http://wikioi.com/problem/1039/ 划分型DP.最终的思路是,F[i][j]表示i分成j份,如果分出来的有1,那么去掉1,就是F[i-1][j-1]:如果没有1,那就都减1 ...

  5. wikioi 1166 矩阵取数游戏

    这题做了至少5个小时= =,虽然思路一开始就确定了,但是因为一些错误,比如dp公式里的+打成*,状态未初始化等原因调了好久(>_<) 最后还是参照着别人的解题报告找到错误. 大数模板直接拿 ...

  6. 【wikioi】1040 统计单词个数

    题目链接 算法:划分型DP PS:被卡过3天.日期:2013-10-10 ~ 2013-10-12 18:52:48 这题是我提交了13次AC= =汗= = 题目描述: 给出一个长度不超过200的由小 ...

  7. 【wikioi】1904 最小路径覆盖问题(最大流+坑人的题+最小路径覆盖)

    http://wikioi.com/problem/1904/ 这题没看数据的话是一个大坑(我已报告官方修复了),答案只要求数量,不用打印路径...orz 最小路径覆盖=n-最大匹配,这个我在说二分图 ...

  8. 【wikioi】2216 行星序列(线段树)

    http://wikioi.com/problem/2216/ 这题太让我感动了QAQ,让我找到了我一直以来写线段树的错误!!!! 就是,pushdown一定要放在最前面!要不然顺序会错.也就是说,当 ...

  9. 【wikioi】1403 新三国争霸(dp+kruskal)

    http://wikioi.com/problem/1403/ 一开始的确感觉和bzoj1003很像,不同的是这里还要求联通,求最小的边. 我们可以想到用最小生成树(为嘛我自己想不到呢..) 我们可以 ...

随机推荐

  1. 小技巧之a标签自动解析URL

    我们可能都知道javascript中的window.location对象用来获取当前页面的地址URL,并把浏览器重定向到新的页面.它有protocol.hostname.host.port.searc ...

  2. PS基础学习 1---基本工具

    1,选框工具: 选择以后对选框中的内容进行修改 ① Shift + 选框 为正方形 ② 选中后鼠标放在选框中对选择范围进行拖动 ③ 移动工具可以拉着选框中的内容移动 ④ ctrl+D取消选框 ⑤单行选 ...

  3. 第七章 jQuery操作表格及其它应用

    1.表格变色 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org ...

  4. c#中网络异常的处理办法

    加入try catch来判断,catch使用的WebException来处理 try { var request = WebRequest.Create(uri); using (var respon ...

  5. SQL_CURSOR_游标循环

    ) DECLARE My_Cursor CURSOR --定义游标 FOR (SELECT column1 FROM #temp1) --查出需要的集合放到游标中 OPEN My_Cursor; -- ...

  6. COM 参数有in, out ,retval

    COM 参数有in, out ,retval 来源:http://blog.sina.com.cn/s/blog_472a9f0c01017uer.html In 输入参数,它的值不被返回    Ou ...

  7. Html5+Css3 Banner Animation 多方位移动特效

    背景:朋友问我小米官网的mi4的特效会做吗,可能新接的一个小网站需要用到.一直有打算研究H5C3的一些效果,趁此机会,赶紧学习一下! 效果:如图 素材 HTML: <div class=&quo ...

  8. Android EditText不弹出输入法焦点问题的总结

    转自:http://mobile.51cto.com/aprogram-403138.htm 看一个manifest中Activity的配置,如果这个页面有EditText,并且我们想要进入这个页面的 ...

  9. (转)印度建全球最大生物识别数据库,MongoDB安全受质疑

    受棱镜门影响,各界对Aadhar的质疑从是否将威胁人民隐私与安全,转而聚焦在 Aadhar 搜集.储存以及处理资料的方法,以及美国新创公司 MongoDB 在计划中扮演的角色. 泱泱大国印度一直以来都 ...

  10. (转)SQLSERVER表分区的介绍(二)

    分区函数和分区方案的创建和使用方法 具体设计过程如下: (1)首先创建一个名为partionTest的数据库.然后分别为数据库partionTest添加四个文件组,文件组名依次为FileGroup00 ...