比如构造一个1, 3, 5, 7, ..., 99的列表,可以通过循环实现:

这是正确的姿势

姿势不正确呀,print(L)被while管住了

我得想一想这个姿势啥问题,当然不算错误

切片

取一个list或tuple的部分元素是非常常见的操作。比如,一个list如下:

>>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']注意,逗号后面要有一个空格

取前3个元素,应该怎么做?
笨办法:

,后面要有空格,你丫是不是有迫害妄想症,我服了!

之所以是笨办法是因为扩展一下,取前N个元素就没辙了,一个个列出来累死你。
取前N个元素,也就是索引为0-(N-1)的元素,可以用循环:
对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python提供了切片(Slice)操作符,能大大简化这种操作。
对应上面的问题,取前3个元素,用一行代码就可以完成切片:

L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引0,1,2,正好是3个元素。
如果第一个索引是0,还可以省略:
也可以从索引1开始,取出2个元素出来:
类似的,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,试试:
记住倒数第一个元素的索引是-1。
切片操作十分有用。我们先创建一个0-99的数列:

>>> L = list(range(100))
>>> L
[0, 1, 2, 3, ..., 99]
可以通过切片轻松取出某一段数列。比如前10个数:
>>> L[:10][0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
后10个数:
>>> L[-10:]不等价L[-10:-1],因为不包括-1
[90, 91, 92, 93, 94, 95, 96, 97, 98, 99]
前11-20个数:
>>> L[10:20]
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
前10个数,每两个取一个:
>>> L[:10:2]
[0, 2, 4, 6, 8]
所有数,每5个取一个:
>>> L[::5]
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]
甚至什么都不写,只写[:]就可以原样复制一个list:
>>> L[:]
[0, 1, 2, 3, ..., 99]

tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:
字符串'xxx'也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:

>>> 'ABCDEFG'[:3]
'ABC'
>>> 'ABCDEFG'[::2]
'ACEG'

在很多编程语言中,针对字符串提供了很多各种截取函数(例如,substring),其实目的就是对字符串切片。Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。

迭代

如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)。
在Python中,迭代是通过for ... in来完成的,而很多语言比如C或者Java,迭代list是通过下标完成的,比如Java代码:

for (i=0; i<list.length; i++) {
    n = list[i];
}

可以看出,Python的for循环抽象程度要高于Java的for循环,因为Python的for循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。
list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:

:和,的后面都要加上空格

因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。
默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时迭代key和value,可以用for k, v in d.items()。

由于字符串也是可迭代对象,因此,也可以作用于for循环:

所以,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。
那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:
最后一个小问题,如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:

注释的#后面要有空格,这。。。
上面的for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:

>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
...     print(x, y)
...
1 1
2 4
3 9

任何可迭代对象都可以作用于for循环,包括我们自定义的数据类型,只要符合迭代条件,就可以使用for循环。

列表生成式

列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。
举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(, 11))

list(range(0, 11))从0开始
但如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么做?方法一是循环:
但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:
写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。
for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:
还可以使用两层循环,可以生成全排列:
三层和三层以上的循环就很少用到了。
运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现:
for循环其实可以同时使用两个甚至多个变量,比如dict的items()可以同时迭代key和value:

>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> for k, v in d.items():
...     print(k, '=', v)
...
y = B
x = A
z = C

因此,列表生成式也可以使用两个变量来生成list:
最后把一个list中所有的字符串变成小写:
如果list中既包含字符串,又包含整数,由于非字符串类型没有lower()方法,所以列表生成式会报错:

修改:

生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。
我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?
如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:
我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。
当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:
所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。
generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。
比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:
上面的函数可以输出斐波那契数列的前N个数:
仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。
也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1
    return 'done'

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>

这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

举个简单的例子,定义一个generator,依次返回数字1,3,5:

def odd():
    print('step 1')
    yield 1
    print('step 2')
    yield(3)
    print('step 3')
    yield(5)

调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:

>>> o = odd()
>>> next(o)
step 1
1
>>> next(o)
step 2
3
>>> next(o)
step 3
5
>>> next(o)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。
回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。
同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

>>> for n in fib(6):
...     print(n)
...
1
1
2
3
5
8

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

>>> g = fib(6)
>>> while True:
...     try:
...         x = next(g)
...         print('g:', x)
...     except StopIteration as e:
...         print('Generator return value:', e.value)
...         break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done

迭代器

我们已经知道,可以直接作用于for循环的数据类型有以下几种:
一类是集合数据类型,如list、tuple、dict、set、str等;
一类是generator,包括生成器和带yield的generator function。
这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。
可以使用isinstance()判断一个对象是否是Iterable对象:

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。
可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。
可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。
把list、dict、str等Iterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

你可能会问,为什么list、dict、str等数据类型不是Iterator?
这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
小结
凡是可作用于for循环的对象都是Iterable类型;
凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;
集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。
Python的for循环本质上就是通过不断调用next()函数实现的,例如:
for x in [1, 2, 3, 4, 5]:
    pass
实际上完全等价于:
# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
    try:
        # 获得下一个值:
        x = next(it)
    except StopIteration:
        # 遇到StopIteration就退出循环
        break

Python高级特性的更多相关文章

  1. 三、python高级特性(切片、迭代、列表生成器、生成器)

    1.python高级特性 1.1切片 list列表 L=['Mli','add','sal','saoo','Lkkl'] L[0:3]  #即为['Mli','add','sal']  从索引0开始 ...

  2. python高级特性:切片/迭代/列表生成式/生成器

    廖雪峰老师的教程上学来的,地址:python高级特性 下面以几个具体示例演示用法: 一.切片 1.1 利用切片实现trim def trim(s): while s[:1] == " &qu ...

  3. python高级特性和高阶函数

    python高级特性 1.集合的推导式 列表推导式,使用一句表达式构造一个新列表,可包含过滤.转换等操作. 语法:[exp for item in collection if codition] if ...

  4. Python高级特性(3): Classes和Metaclasses(转)

    原文:Python高级特性(3): Classes和Metaclasses 类和对象 类和函数一样都是Python中的对象.当一个类定义完成之后,Python将创建一个“类对象”并将其赋值给一个同名变 ...

  5. Python高级特性(2):Closures、Decorators和functools(转)

    原文:Python高级特性(2):Closures.Decorators和functools 装饰器(Decorators) 装饰器是这样一种设计模式:如果一个类希望添加其他类的一些功能,而不希望通过 ...

  6. Python高级特性(1):Iterators、Generators和itertools(转)

    译文:Python高级特性(1):Iterators.Generators和itertools [译注]:作为一门动态脚本语言,Python 对编程初学者而言很友好,丰富的第三方库能够给使用者带来很大 ...

  7. Python高级特性之:List Comprehensions、Generator、Dictionary and set ...

    今天帅气的易哥和大家分享的是Pyton的高级特性,希望大家能和我一起学习这门语言的魅力. Python高级特性之:List Comprehensions.Generator.Dictionary an ...

  8. Python 高级特性介绍 - 迭代的99种姿势 与协程

    Python 高级特性介绍 - 迭代的99种姿势 与协程 引言 写这个笔记记录一下一点点收获 测试环境版本: Python 3.7.4 (default, Sep 28 2019, 16:39:19) ...

  9. Python高级特性(切片,迭代,列表生成式,生成器,迭代器)

    掌握了Python的数据类型.语句和函数,基本上就可以编写出很多有用的程序了. 比如构造一个1, 3, 5, 7, ..., 99的列表,可以通过循环实现: L = [] n = 1 while n ...

  10. Python 高级特性(1)- 切片

    前言 面 tx 被问到 python 的高级特性相关,这里做个补充学习吧 正向范围取值 关键点 首位下标是 0 第一个数字是起始下标,第二个数字是结束下标(但最终结果不包含它) 代码块一 # 正向范围 ...

随机推荐

  1. HDU 2340 Obfuscation(dp)

    题意:已知原串(长度为1~1000),它由多个单词组成,每个单词除了首尾字母,其余字母为乱序,且句子中无空格.给定n个互不相同的单词(1 <= n <= 10000),问是否能用这n个单词 ...

  2. VisualLeakDetector

    只需要#include "vld.h"就OK -------------------------------------- 找内存泄露挺方便的,比VS自带的详细.

  3. [转]WINDOW进程通信的几种方式

    windows进程通信的几种方式 1 文件映射 文件映射(Memory-Mapped Files)能使进程把文件内容当作进程地址区间一块内存那样来对待.因此,进程不必使用文件I/O操作,只需简单的指针 ...

  4. Poj 3982 序列

    1.Link: http://poj.org/problem?id=3982 2.Content: 序列 Time Limit: 1000MS   Memory Limit: 65536K Total ...

  5. 教您如何使用MySQL group_concat函数

    MySQL group_concat函数是典型的字符串连接函数,下面就为您介绍MySQL group_concat的语法,希望对您学习MySQL group_concat函数有所帮助. MySQL g ...

  6. 关于canvas中的jquery

    关于h5,相比前端的同事们都很了解了吧!h5里面有个canvas,现在用的蛮火.但是canvas里面的代码确实是有点繁多,特别是要对于图形做什么操作的时候...我昨天无意间发现了一个canvas的插件 ...

  7. 在Linux中,如何取出一个字符串的前5位

    问: 在Linux中,如何取出一个字符串的前5位? 常用的一些方法如下: [tough@toughhou ~]$ str=abcdef [tough@toughhou ~]$ echo $str ab ...

  8. Maven使用本地jar包(小私服?支持自动打入war包)

    1.库目录结构 D:\maven-local-repo\cn\xcf007\MD5\1.0\MD5-1.0.jar 2.安装到该本地库 mvn install:install-file -Dfile= ...

  9. 【BZOJ 1088】 [SCOI2005]扫雷Mine

    Description 相信大家都玩过扫雷的游戏.那是在一个n*m的矩阵里面有一些雷,要你根据一些信息找出雷来.万圣节到了,“余”人国流行起了一种简单的扫雷游戏,这个游戏规则和扫雷一样,如果某个格子没 ...

  10. 3123 高精度练习之超大整数乘法 - Wikioi

    题目描述 Description 给出两个正整数A和B,计算A*B的值.保证A和B的位数不超过100000位. 输入描述 Input Description 读入两个用空格隔开的正整数 输出描述 Ou ...