这个题目非常赞! 给定一个矩形,要求用1*2 的格子进行覆盖,有多少种覆盖方法呢?

dp[i][j] 当状态为j,且第i行已经完全铺满的情况下的种类数有多少种?j中1表示占了,0表示没有被占。

很显然,当每行被放了之后,有一些状态是不可能的,我们这里用1 表示竖着放,0表示横着放。 所以两个0 要相邻,这是程序中的s。

我们每一状态转移,枚举每一个可能的状态,我们希望dp[i][j] 中的j呈现出s[k] 的状态,依次来进行状态转移。

#include <iostream>
#include <vector>
#include <cstring>
using namespace std; vector<int> s; // possible state
long long dp[13][1<<12]; // dp[i][j] the number of (row i state j) int main()
{
//freopen("1.txt","r",stdin);
int M,N;
while(cin>>M>>N && M!=0 && N!=0)
{
s.clear();
if(M*N%2) {cout<<0<<endl; continue;}
memset(dp,0,sizeof(dp));
// 0-0 pair
for(int tag = 0; tag < (1<<N); tag++)
{
for(int i=0; i<N; )
{
if(tag & (1<<i)) i++;
else
{
if( i+1< N && !(tag&(1<<(i+1)))) i+=2;
else break;
}
if(i== N) s.push_back(tag);
}
}
for(int i=0; i<s.size(); i++) dp[0][s[i]] = 1;
for(int step = 1; step< M; step++)
{
for(int tag = 0; tag < (1<<N); tag++)
{
for(int i=0; i<s.size(); i++)
{
if((tag & s[i]) != tag) continue;
dp[step][tag^ s[i]] += dp[step-1][tag];
}
}
}
cout<<dp[M-1][0]<<endl;
}
return 0;
}

.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }

POJ 2411 压缩状态DP的更多相关文章

  1. POJ 3254 压缩状态DP

    题意:一个矩形网格,可以填0或1, 但有些位置什么数都不能填,要求相邻两个不同时为1,有多少种填法.矩形大小最大 12*12. 压缩状态DP大多有一个可行的state的范围,先求出这个state范围, ...

  2. ZOJ 3471 压缩状态DP

    这个问题要看状态怎么想,第一种直接的想法是1代表未合并,状态就从1111111 转移到 带有1个0,然后带有两个0, 但是这样子编程非常不直观.换一种思路,0代表未合并,但是我可以先合并前几个,就是说 ...

  3. Mondriaan's Dream - POJ 2411(状态压缩)

    题目大意:有一些1*2的矩形,现在用这些小矩形覆盖M*N的大矩形,不能重复覆盖,并且要覆盖完全,求有多少种覆盖方式. 分析:可以使用1和0两种状态来表示这个位置有没有放置,1表示放置,0表示没有放置, ...

  4. POJ 2411 状压DP经典

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 16771   Accepted: 968 ...

  5. POJ 2411 状压dp

    F - Mondriaan's Dream Time Limit:3000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I6 ...

  6. poj 2411 Mondriaan's Dream(状态压缩dP)

    题目:http://poj.org/problem?id=2411 Input The input contains several test cases. Each test case is mad ...

  7. Poj 2411 Mondriaan's Dream(压缩矩阵DP)

    一.Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, ...

  8. poj 3311(状态压缩DP)

    poj  3311(状态压缩DP) 题意:一个人送披萨从原点出发,每次不超过10个地方,每个地方可以重复走,给出这些地方之间的时间,求送完披萨回到原点的最小时间. 解析:类似TSP问题,但是每个点可以 ...

  9. poj 1185(状态压缩DP)

    poj  1185(状态压缩DP) 题意:在一个N*M的矩阵中,‘H'表示不能放大炮,’P'表示可以放大炮,大炮能攻击到沿横向左右各两格,沿纵向上下各两格,现在要放尽可能多的大炮使得,大炮之间不能相互 ...

随机推荐

  1. POJ 3069 Saruman's Army(贪心)

     Saruman's Army Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  2. 安装.Net framework 3.5 sp1报错的解决方法

    错误日志,提示: [11/22/07,18:04:40] Microsoft .NET Framework 2.0a: [2] Error: Installation failed for compo ...

  3. hihocoder 1237 Farthest Point

    #1237 : Farthest Point 时间限制:5000ms 单点时限:1000ms 内存限制:256MB 描述 Given a circle on a two-dimentional pla ...

  4. 【.net】创建属于自己的log组件——改进版

    在上一篇随笔中,建立了一个自己的Log简单日志记录类   可是在众多园友的提点下,对于线程,阻塞,资源竞争等都没有仔细的去了解 在这版的改进中,我们新加了线程操作,线程等待,以及多层的错误捕获.[不知 ...

  5. MyBatis(3.2.3) - Configuring MyBatis using XML, Properties

    The properties configuration element can be used to externalize the configuration values into a prop ...

  6. Android简单计算器

    这是很久之前做的,方法很简单,都是一些基础的,不足的是还有很多功能不够. activity_main.xml布局: <LinearLayout xmlns:android="http: ...

  7. 剑指offer_快速查找递增二维数组中是否存在目标

    [编程题]二维数组中的查找 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数     ...

  8. VScript 函数调用的两种分类:Sub过程和Function过程

    来源:http://soft.zdnet.com.cn/software_zone/2007/0925/523318.shtml 在 VBScript 中,过程被分为两类:Sub 过程和 Functi ...

  9. sql server日期时间转字符串(转)

    一.sql server日期时间函数Sql Server中的日期与时间函数 1.  当前系统日期.时间     select getdate()  2. dateadd  在向指定日期加上一段时间的基 ...

  10. 第十三篇、Swift_Nav自定义返回按钮后或者隐藏导航栏,Pop返回手势失效的解决方法 Pop全局返回添加的方法

    边缘的pop返回手势: override func viewDidLoad() { super.viewDidLoad() view.backgroundColor = UIColor.purple ...