tf.nn.dropout 激活函数
tf.nn.dropout(x,keep_prob,noise_shape=None,seed=None,name=None)
参数:
x:一个浮点型Tensor.
keep_prob:一个标量Tensor,它与x具有相同类型.保留每个元素的概率.
noise_shape:类型为int32的1维Tensor,表示随机产生的保持/丢弃标志的形状.
seed:一个Python整数.用于创建随机种子.
name:此操作的名称(可选).
返回:
该函数返回与x具有相同形状的Tensor.
该函数使x的一部分(概率大约为keep_prob)变为0,其余变为x/keep_prob,
noise_shape可以使得矩阵x一部分行全为0或者部分列全为0
sample
with tf.Session() as sess:
d = tf.to_float(tf.reshape(tf.range(1,17),[4,4]))
sess.run(tf.global_variables_initializer())
print(sess.run(tf.shape(d)))
print(sess.run(d[0]))
# 矩阵有一半左右的元素变为element/0.5,其余为0
dropout_a44 = tf.nn.dropout(d, 0.5, noise_shape = None)
result_dropout_a44 = sess.run(dropout_a44)
print(result_dropout_a44)
# 行大小相同4,行同为0,或同不为0
dropout_a41 = tf.nn.dropout(d, 0.5, noise_shape = [4,1])
result_dropout_a41 = sess.run(dropout_a41)
print(result_dropout_a41)
# 列大小相同4,列同为0,或同不为0
dropout_a24 = tf.nn.dropout(d, 0.5, noise_shape = [1,4])
result_dropout_a24 = sess.run(dropout_a24)
print(result_dropout_a24)
#不相等的noise_shape只能为1
output
[[ 0. 4. 0. 8.]
[10. 12. 14. 0.]
[ 0. 20. 22. 0.]
[26. 28. 30. 32.]]
[[ 2. 4. 6. 8.]
[10. 12. 14. 16.]
[18. 20. 22. 24.]
[ 0. 0. 0. 0.]]
[[ 0. 0. 6. 0.]
[ 0. 0. 14. 0.]
[ 0. 0. 22. 0.]
[ 0. 0. 30. 0.]]
tf.nn.dropout 激活函数的更多相关文章
- TensorFlow函数教程:tf.nn.dropout
tf.nn.dropout函数 tf.nn.dropout( x, keep_prob, noise_shape=None, seed=None, name=None ) 定义在:tensorflow ...
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
- Tensorflow学习笔记(2):tf.nn.dropout 与 tf.layers.dropout
A quick glance through tensorflow/python/layers/core.py and tensorflow/python/ops/nn_ops.pyreveals t ...
- tensorflow 笔记11:tf.nn.dropout() 的使用
tf.nn.dropout:函数官网说明: tf.nn.dropout( x, keep_prob, noise_shape=None, seed=None, name=None ) Defined ...
- TensorFlow学习---tf.nn.dropout防止过拟合
一. Dropout原理简述: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层. Dropout就是在不同的训练过程中随机扔掉一部分神经元.也 ...
- tf.nn.dropout
tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None) 此函数是为了防止在训练中过拟合的操作,将训练输出按一定规则进行变 ...
- TensorFlow之tf.nn.dropout():防止模型训练过程中的过拟合问题
一:适用范围: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层 二:原理: dropout就是在不同的训练过程中随机扔掉一部分神经元.也就是让 ...
- TensorFlow学习笔记 速记1——tf.nn.dropout
tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None,name=None) 上面方法中常用的是前两个参数: 第一个参数 x:指输入: 第二个 ...
- tf.nn.relu6 激活函数
tf.nn.relu6(features,name=None) 计算校正线性6:min(max(features, 0), 6) 参数: features:一个Tensor,类型为float,doub ...
随机推荐
- annaconda的安装及使用
一.安装 1.安装包下载: 方式1:官网:https://www.anaconda.com/distribution/ 方式2:清华镜像源:https://mirrors.tuna.tsinghua. ...
- Spring集成axis2
1.新建一个项目,结构如下 2.引入项目所需jar包 axis相关jar文件说明请查阅该博文 3.配置web.xml,注册axis2信息 <?xml version="1.0" ...
- Js中的For循环详解
大家好,我是逆战班的一员,今天给大家讲解一下Js循环中的For循环. For循环是JS循环中一个非常重要的部分. 我们先讲一下for循环的作用: For循环用在需要重复执行的某些代码,比如从1打印到1 ...
- 面试官再问我如何保证 RocketMQ 不丢失消息,这回我笑了!
最近看了 @JavaGuide 发布的一篇『面试官问我如何保证Kafka不丢失消息?我哭了!』,这篇文章承接这个主题,来聊聊如何保证 RocketMQ 不丢失消息. 0x00. 消息的发送流程 一条消 ...
- 为什么Mysql的常用引擎都默认使用B+树作为索引?
一.前言 为了讲清楚这个问题,我们要先了解什么是索引. 我记得刚刚学习数据库的时候,老师喜欢用书本的目录来类比数据库的索引,并告诉我们索引能够像目录一样,让我们更快地找到想要找到的数据. 如果是第一次 ...
- Linux定时备份
#!/bin/bash. /etc/profile. ~/.bash_profile# Shell script to backup MySql database # To backup Nysql ...
- PTA 创建计算机类
6-5创建计算机 (10分) 定义一个简单的Computer类,有数据成员芯片(cpu).内存(ram).光驱(cdrom)等等,有两个公有成员函数run.stop.cpu为CPU类的一个对象,ram ...
- RNN,GRU,LSTM
2019-08-29 17:17:15 问题描述:比较RNN,GRU,LSTM. 问题求解: 循环神经网络 RNN 传统的RNN是维护了一个隐变量 ht 用来保存序列信息,ht 基于 xt 和 ht- ...
- Qt 事件使用示例 (一)
Qt 事件使用示例,以一个常见的使用来说明:QLabel 当鼠标滑过时改变颜色. 事先说明要想实现这一功能有很多种方法,如Qss实现,本文使用Qt事件的方式来实现. 第一步,我们得实现一个从QLabe ...
- PHP7内核(四):生命周期之开始前的躁动
上一章我们对PHP的源码目录结构有了初步了解,本章我们继续从生命周期的维度对PHP进行剖析. 一.概览 生命周期是什么呢?你可以把它看作执行过程,PHP的生命周期也就是它从开始执行到结束执行的过程. ...