林轩田机器学习基石笔记1—The Learning Problem
机器学习分为四步:
- When Can Machine Learn?
Why Can Machine Learn?
How Can Machine Learn?
How Can Machine Learn Better?
一、What is Machine Learning
Q:什么是“学习”?
A:学习就是人类通过观察、积累经验,掌握某项技能或能力。就好像我们从小学习识别字母、认识汉字,就是学习的过程。
机器学习(Machine Learning),顾名思义,就是让机器(计算机)也能向人类一样,通过观察大量的数据和训练,发现事物规律,获得某种分析问题、解决问题的能力。
机器学习可以被定义为:Improving some performance measure with experence computed from data. 也就是机器从数据中总结经验,从数据中找出某种规律或者模型,并用它来解决实际问题。
机器学习应用场合大致可归纳为三个条件:
- 事物本身存在某种潜在规律
某些问题难以使用普通编程解决
有大量的数据样本可供使用
二、Applications of Machine Learning
机器学习在我们的衣、食、住、行、教育、娱乐等各个方面都有着广泛的应用,我们的生活处处都离不开机器学习。
1)Food
data:网上的餐厅信息(位置,评价)
skill:告诉用户去该餐厅吃饭多大可能性中毒
2)Transportation
data:一些交通信号的图片和标志
skill:准备辨认交通信号
三、Components of Machine Learning
本系列的课程对机器学习问题有一些基本的术语需要注意一下:
- 输入x
输出y
目标函数f,即最接近实际样本分布的规律
训练样本data
假设hypothesis,一个机器学习模型对应了很多不同的hypothesis,通过演算法A,选择一个最佳的hypothesis对应的函数称为矩g,g能最好地表示事物的内在规律,也是我们最终想要得到的模型表达式。
实际中,机器学习的流程图可以表示为:
机器学习模型:H + A
机器学习:通过样本数据得到假设g(use data to compute hypothesis g)
四、Machine Learning and Other Fields
与机器学习相关的领域有:
- 数据挖掘(Data Mining):use (huge) data to find property that is intersting
人工智能(Artificial Intelligence):compute somthing that shows intelligent behavior
统计(Statistics):use data to make inference about an unknown process
其实,机器学习与这三个领域是相通的,基本类似,但也不完全一样。
如果DM中的intersting 和ML的hypothesies 相似,则ML=DM。DM can help ML
ML can realize AI.
Statistic can be used to achieve ML.
五、总结
本节课主要介绍了什么是机器学习,什么样的场合下可以使用机器学习解决问题,然后用流程图的形式展示了机器学习的整个过程,最后把机器学习和数据挖掘、人工智能、统计这三个领域做个比较。
林轩田机器学习基石笔记1—The Learning Problem的更多相关文章
- 林轩田机器学习基石笔记4—Feasibility of Learning
上节课介绍了机器学习可以分为不同的类型.其中,监督式学习中的二元分类和回归分析是最常见的也是最重要的机器学习问题.本节课,我们将介绍机器学习的可行性,讨论问题是否可以使用机器学习来解决. 一.Lear ...
- 林轩田机器学习基石笔记3—Types of Learning
上节课我们主要介绍了解决线性分类问题的一个简单的方法:PLA.PLA能够在平面中选择一条直线将样本数据完全正确分类.而对于线性不可分的情况,可以使用Pocket Algorithm来处理.本节课将主要 ...
- 林轩田机器学习基石笔记2—Learning to Answer Yes/No
机器学习的整个过程:根据模型H,使用演算法A,在训练样本D上进行训练,得到最好的h,其对应的g就是我们最后需要的机器学习的模型函数,一般g接近于目标函数f.本节课将继续深入探讨机器学习问题,介绍感知机 ...
- (转载)林轩田机器学习基石课程学习笔记1 — The Learning Problem
(转载)林轩田机器学习基石课程学习笔记1 - The Learning Problem When Can Machine Learn? Why Can Machine Learn? How Can M ...
- 机器学习基石(台湾大学 林轩田),Lecture 1: The Learning Problem
课程的讲授从logo出发,logo由四个图案拼接而成,两个大的和两个小的.比较小的两个下一次课程就可能会解释到它们的意思,两个大的可能到课程后期才会解释到它们的意思(提示:红色代表使用机器学习危险,蓝 ...
- 林轩田机器学习基石课程学习笔记5 — Training versus Testing
上节课,我们主要介绍了机器学习的可行性.首先,由NFL定理可知,机器学习貌似是不可行的.但是,随后引入了统计学知识,如果样本数据足够大,且hypothesis个数有限,那么机器学习一般就是可行的.本节 ...
- 【The VC Dimension】林轩田机器学习基石
首先回顾上节课末尾引出来的VC Bound概念,对于机器学习来说,VC dimension理论到底有啥用. 三点: 1. 如果有Break Point证明是一个好的假设集合 2. 如果N足够大,那么E ...
- 【 Logistic Regression 】林轩田机器学习基石
这里提出Logistic Regression的角度是Soft Binary Classification.输出限定在0~1之间,用于表示可能发生positive的概率. 具体的做法是在Linear ...
- 【Linear Regression】林轩田机器学习基石
这一节开始讲基础的Linear Regression算法. (1)Linear Regression的假设空间变成了实数域 (2)Linear Regression的目标是找到使得残差更小的分割线(超 ...
随机推荐
- 解决ubuntu16.04 ‘E: 无法获得锁 /var/lib/dpkg/lock-frontend - open (11: 资源暂时不可用) ’ 问题
问题: 当运行sudo apt-get install/update/其他命令时,会出现如下提示: E: 无法获得锁 /var/lib/dpkg/lock-frontend - open (11: 资 ...
- Git&GitHub 基本使用
如果是Windows用户需要自行去Git的官网下载Git工具 相信以您的聪明才知不需要一会就可以安装好Git工具了 博主这里是MacOS系统,本省就自带Git工具就不演示安装了 在完成一个简单的Git ...
- 字符串中子序列出现次数(dp)
躲藏 链接:https://ac.nowcoder.com/acm/problem/15669来源:牛客网 题目描述 XHRlyb和她的小伙伴Cwbc在玩捉迷藏游戏. Cwbc藏在多个不区分大小写的字 ...
- UML类图说明
1:示例 这是一个使用UML表示的类图的结构,通过箭头,菱形,实线以及虚线来代表一些类之间的关系,后面将按照上面的例子一一介绍说明. 上图中,abstract 车是一个抽象类.小汽车和自行车是继承了车 ...
- 微服务项目开发学成在线_day01_CMS服务端开发
05-CMS需求分析-什么是CMS 什么是CMS?CMS (Content Management System)即内容管理系统,不同的项目对CMS的定位不同.CMS有哪些类型? 每个公司对每个项目的C ...
- Ackermann函数
Ackermann函数定义如下: 若m=0,返回n+1. 若m>0且n=0,返回Ackermann(m-1,1). 若m>0且n>0,返回Ackermann(m-1,Ackerman ...
- python图像处理:一福变五福
快过年了,各种互联网产品都出来撒红包.某宝一年一度的“集五福活动”更是成为每年的必备活动之一. 虽然到最后每人大概也就分个两块钱,但作为一个全民话题,大多数人还是愿意凑凑热闹. 毕竟对于如今生活在大城 ...
- PHP 5.3 新特性
1 PHP 5.3中的新特性 1.1 支持命名空间 (Namespace) 毫无疑问,命名空间是PHP5.3所带来的最重要的新特性. 在PHP5.3中,则只需要指定不同的命名空间即可,命名空间的分隔符 ...
- sbt 设置
修改 sbtopts for shell # zkk -sbt-dir D:/DATA/.sbt -sbt-boot D:/DATA/.sbt/boot -ivy D:/DATA/.ivy2 修改 s ...
- 吴裕雄--天生自然 PYTHON3开发学习:迭代器与生成器
list=[1,2,3,4] it = iter(list) # 创建迭代器对象 for x in it: print (x, end=" ") import sys # 引入 s ...