【导读】斯坦福大学的人工智能课程“CS 221”至今仍然是人工智能学习课程的经典之一。为了方便广大不能亲临现场听讲的同学,课程官方推出了课程笔记CheatSheet,涵盖4大类模型。

斯坦福大学的人工智能课程“CS 221”,这门铁打的课程从2011年开始已经走过了8个年头,流水的讲师换了一批又一批,送走的毕业生一拨又一拨,至今仍然是人工智能学习的经典课程之一。目前2019年春季课程正在如火如荼的开展中。

这门课程是没有教科书的,所有内容都蕴含在讲师的教案以及课后作业中。不过为了方便广大不能亲临现场听讲的同学,课程官方推出了课程笔记CheatSheet,涵盖4大类模型。

笔记已在GitHub开源,5份PDF供大家下载保存打印当成鼠标垫设成壁纸做成窗帘裁成小册子…随便你选择自己合适的操作方式。地址:

https://github.com/afshinea/stanford-cs-221-artificial-intelligence/blob/master/cheatsheet-reflex-models.pdf

因为每年课程可能都会有更新,所以在介绍笔记之前,让我们先对今年春季课程有一个先入的了解,便于新进同学少走弯路。

这门课程是关于什么的?

网络搜索,语音识别,人脸识别,机器翻译,自动驾驶和自动调度有什么共同之处?这些都是复杂的现实问题,人工智能的目标是用严格的数学工具解决这些问题。

在本课程中,你讲学习这些应用程序的基本原则并实践其中一些系统。具体主题包括机器学习,搜索,游戏,马尔可夫决策过程,约束满足,图形模型和逻辑。该课程的主要目标是提供解决生活中可能遇到的新AI问题的工具。

预备知识

这门精进课程涵盖众多领域,而且课程进度飞快,要求学者必须在理论和经验方面都有坚实的基础。在开始学习该课程之前,确保你已经看过以下课程(或者其他途径学到的同等级课程)

  • 编程 (CS 106A, CS 106B, CS 107)

  • 离散数学 (CS 103)

  • 概率 (CS 109)

接下来新智元来介绍一下笔记内容。

基于反射的机器学习模型

在本节介绍了基于反射的模型,这些模型可以通过经历具有输入-输出的样本来改善经验。这一节主要介绍了以下概念

  • 线性预测变量

  • 损失最小化

  • 非线性预测变量

  • 随机梯度下降

  • 微调模型

部分子概念:

线性分类

K最近邻

神经网络

梯度下降

反向传播

近似和估计误差

具有搜索优化和MDP的基于状态的模型

本节主要介绍了搜索优化、马尔可夫决策过程和游戏。

部分子概念:

树搜索

搜索问题

广度优先搜索

深度优先搜索

统一成本搜索

A星搜索

马尔科夫决策

具有CSP和贝叶斯网络的基于变量的模型

本节主要讲了约束满足问题和贝叶斯网络。

部分子概念:

因子图

Markov blanket

贝叶斯网络

基于逻辑的模型,具有命题和一阶逻辑

本节主要介绍了该模型概念、命题逻辑和一阶逻辑。

部分子概念:

概念

解释功能

分辨率推理规则

官方笔记地址:

https://stanford.edu/~shervine/teaching/cs-221/cheatsheet-reflex-models

祝大家学习愉快!哦,别忘了在评论区晒出你们都是怎么使用这份CheatSheet的。

斯坦福经典AI课程CS 221官方笔记来了!机器学习模型、贝叶斯网络等重点速查...的更多相关文章

  1. 机器学习&数据挖掘笔记_18(PGM练习二:贝叶斯网络在遗传图谱在的应用)

    前言: 这是coursera课程:Probabilistic Graphical Models上的第二个实验,主要是用贝叶斯网络对基因遗传问题进行一些计算.具体实验内容可参考实验指导教材:bayes ...

  2. R语言︱贝叶斯网络语言实现及与朴素贝叶斯区别(笔记)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 一.贝叶斯网络与朴素贝叶斯的区别 朴素贝叶斯的 ...

  3. 机器学习实战笔记(Python实现)-03-朴素贝叶斯

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  4. 概率图模型(PGM)学习笔记(四)-贝叶斯网络-伯努利贝叶斯-多项式贝叶斯

    之前忘记强调了一个重要差别:条件概率链式法则和贝叶斯网络链式法则的差别 条件概率链式法则 贝叶斯网络链式法则,如图1 图1 乍一看非常easy认为贝叶斯网络链式法则不就是大家曾经学的链式法则么,事实上 ...

  5. 概率图形模型(PGM)学习笔记(四)-贝叶斯网络-伯努利贝叶斯-贝叶斯多项式

    之前忘记强调重要的差异:链式法则的条件概率和贝叶斯网络的链式法则之间的差异 条件概率链式法则 P\left({D,I,G,S,L} \right) = P\left( D \right)P\left( ...

  6. 概率图模型(PGM)学习笔记(二)贝叶斯网络-语义学与因子分解

    概率分布(Distributions) 如图1所看到的,这是最简单的联合分布案例,姑且称之为学生模型. 图1 当中包括3个变量.各自是:I(学生智力,有0和1两个状态).D(试卷难度,有0和1两个状态 ...

  7. 学霸双胞胎开源斯坦福CS 221人工智能备忘录,图文并茂看懂反射、状态、变量、逻辑...

    一份斯坦福CS 221人工智能备忘录最近登上了GitHub Trending. 这份备忘录解释了课程中的许多名词.公式和原理,动图.文字.表格并茂,作者之一还是官方助教,堪称CS 221最佳学习笔记. ...

  8. 写shell脚本速查笔记

    linux shell脚本的语法蛋疼,而且对于java开发人员来说又不常用,常常是学了一次等到下次用的时候又忘记了.因此制作这个速查笔记,用于要写shell脚本时快速回忆&速查. 获取当前脚本 ...

  9. Deeplearning.ai课程笔记--汇总

    从接触机器学习就了解到Andrew Ng的机器学习课程,后来发现又出来深度学习课程,就开始在网易云课堂上学习deeplearning.ai的课程,Andrew 的课真是的把深入浅出.当然学习这些课程还 ...

随机推荐

  1. 量化投资学习笔记30——《Python机器学习应用》课程笔记04

    有监督学习 常用分类算法 KNN:K近邻分类器.通过计算待分类数据点,与已知数据中所有点的距离,取距离最小的前K个点,根据"少数服从多数"的原则,将这个数据点划分为出现次数最多的那 ...

  2. K-means真的不能使用曼哈顿距离吗?

    问题 说到k-means聚类算法,想必大家已经对它很熟悉了,它是基于距离计算的经典无监督算法,但是有一次在我接受面试时,面试官问了我一个问题:“k-means为什么不能使用曼哈顿距离计算,而使用欧式距 ...

  3. 分布式系统一致性问题与Raft算法(下)

    上一篇讲述了什么是分布式一致性问题,以及它难在哪里,liveness和satefy问题,和FLP impossibility定理.有兴趣的童鞋可以看看分布式系统一致性问题与Raft算法(上). 这一节 ...

  4. 逆向破解之160个CrackMe —— 001(上)

    CrackMe--001 前置知识介绍: 160 CrackMe 是比较适合新手学习逆向破解的CrackMe的一个集合,一共160个待逆向破解的程序 CrackMe:一些公开给别人尝试破解的小程序,制 ...

  5. 用vue开发一个公众号商城SPA——1.前期准备和写页面

    使用vue开发公众号商城 第1篇记录项目准备.搭建,写页面遇到第问题以及总结,持续更新 公司最近接了个商城项目,包括PC端商城.微信公众号网页商城.后台管理系统.这几天在做微信公众号商城,又新接触了很 ...

  6. JS动画之缓动函数分析及动画库

    上一篇讲了JS动画定时器相关知识,这一篇介绍下缓动函数及流行的动画库. 熟悉的图 实际使用 jquery animate()+jquery.easing插件的使用: $(selector).anima ...

  7. Spring源码阅读笔记04:默认xml标签解析

    上文我们主要学习了Spring是如何获取xml配置文件并且将其转换成Document,我们知道xml文件是由各种标签组成,Spring需要将其解析成对应的配置信息.之前提到过Spring中的标签包括默 ...

  8. FreeModBus源码解析(1)---开篇

    一.设计思想 任何通信协议的实现都是基于状态机的设计思想,就是来了一串数据判断是是干啥的在调用相应的处理函数只不过高手一般采用回调处理. 如果你熟悉了回调.源码里的状态机的实现又可以理解,那么恭喜你已 ...

  9. Redux 架构理解

    Redux 是一种前端“架构模式”,是 Flux 架构的一种变种,用来提供可预测的状态管理.虽然经常和 React 一起被提及,但是 Redux 却不仅仅只能用于 React,还可以将其运用到其他前端 ...

  10. R中character和factor的as.integer的不同

    记录一个容易犯错的地方. 用chr标记的0~1变量可以变为整数0和1, 而用因子factor标记的变量转换为整数时总是从1开始. 如果不注意区分就会发生令自己困惑的错误.