「POJ1734」Sightseeing trip
「POJ1734」Sightseeing trip
传送门
这题就是要我们求一个最小环并且按顺序输出一组解。
考虑 \(O(n^3)\) 地用 \(\text{Floyd}\) 求最小环:
考虑 \(\text{Floyd}\) 的过程,在最外层循环枚举到 \(k\) 时,最短路矩阵中,\(f_{i, j}\) 存储的就是 \(i\) 到 \(j\) 经过点 \(1\cdots k - 1\) 的最短路。
那么我们就可以在这时枚举和点 \(k\) 相邻的两个点 \(i, j\),\(\min \left\{f_{i, j} + w(i, k) + w(j, k)\right\}\) 就是包含点 \(k\) 的最小环长度,然后再用点 \(k\) 更新最短路矩阵,取最小值即可。
对于路径的输出,只需要在更新最短路时记录一下中转点然后每次递归处理即可。
参考代码:
#include <cstring>
#include <cstdio>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
using namespace std;
template < class T > inline T min(T a, T b) { return a < b ? a : b; }
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
}
const int _ = 102;
typedef long long LL;
int n, m, d[_][_], f[_][_], p[_][_], G[_];
inline void dfs(int x, int y) {
if (p[x][y] != 0) dfs(x, p[x][y]), G[++G[0]] = p[x][y], dfs(p[x][y], y);
}
int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
read(n), read(m);
for (rg int i = 1; i <= n; ++i)
for (rg int j = 1; j <= n; ++j) d[i][j] = 2147483647;
for (rg int i = 1; i <= n; ++i) d[i][i] = 0;
for (rg int u, v, l; m--; )
read(u), read(v), read(l), d[u][v] = d[v][u] = min(d[u][v], l);
for (rg int i = 1; i <= n; ++i)
for (rg int j = 1; j <= n; ++j) f[i][j] = d[i][j];
int ans = 2147483647;
for (rg int k = 1; k <= n; ++k) {
for (rg int i = 1; i < k; ++i)
for (rg int j = 1; j < i; ++j) {
if (ans > (LL) d[k][i] + f[i][j] + d[j][k]) {
ans = d[k][i] + f[i][j] + d[j][k];
G[0] = 0, G[++G[0]] = i, dfs(i, j), G[++G[0]] = j, G[++G[0]] = k;
}
}
for (rg int i = 1; i <= n; ++i)
for (rg int j = 1; j <= n; ++j)
if (f[i][j] > (LL) f[i][k] + f[k][j])
f[i][j] = f[i][k] + f[k][j], p[i][j] = k;
}
if (ans == 2147483647) puts("No solution.");
else for (rg int i = 1; i <= G[0]; ++i) printf("%d ", G[i]);
return 0;
}
「POJ1734」Sightseeing trip的更多相关文章
- 「LOJ#10072」「一本通 3.2 例 1」Sightseeing Trip(无向图最小环问题)(Floyd
题目描述 原题来自:CEOI 1999 给定一张无向图,求图中一个至少包含 333 个点的环,环上的节点不重复,并且环上的边的长度之和最小.该问题称为无向图的最小环问题.在本题中,你需要输出最小环的方 ...
- 【poj1734】Sightseeing trip
Sightseeing trip Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8520 Accepted: 3200 ...
- #10072. 「一本通 3.2 例 1」Sightseeing Trip(floyd求最小环+路径)
https://loj.ac/problem/10072 针对无向图 因为Floyd是按照结点的顺序更新最短路的,所以我们在更新最短路之前先找到一个连接点k,当前的点k肯定不存在于已存在的最短路f[i ...
- 【POJ1734】Sightseeing Trip 无向图最小环
题目大意:给定一个 N 个顶点的无向图,边有边权,如果存在,求出该无向图的最小环,即:边权和最小的环,并输出路径. 题解:由于无向图,且节点数较少,考虑 Floyd 算法,在最外层刚开始遍历到第 K ...
- poj1734 Sightseeing trip【最小环】
Sightseeing trip Time Limit: 1000MS Memory Limit: 65536K Total Submissions:8588 Accepted:3224 ...
- 「译」JUnit 5 系列:条件测试
原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...
- 「译」JUnit 5 系列:扩展模型(Extension Model)
原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Lin ...
- JavaScript OOP 之「创建对象」
工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPers ...
- 「C++」理解智能指针
维基百科上面对于「智能指针」是这样描述的: 智能指针(英语:Smart pointer)是一种抽象的数据类型.在程序设计中,它通常是经由类型模板(class template)来实做,借由模板(tem ...
随机推荐
- ajax传map,后端接收并解析
前端let map = new Map(); map.set(1, 1); map.set(2, 2); map.set(3, 3); //map转obj let obj= Object.create ...
- [踩坑记录] windows10 应用商店打不开 代码: 0x80131500
在某博客看到的方法,供参考,可以尝试一下,我的也是这么解决的1.打开“运行”输入 inetcpl.cpl (“WINDOWS”+“R”键,输入 inetcpl.cpl亦可)2.点开高级往下拉,勾上&q ...
- Android学习08
PopupWindow PopupWindow用来实现一个弹出框,可以使用任意布局的View作为其内容,这个弹出框是悬浮在当前activity之上的. 1.弹出框的布局:画一个PopupWindow的 ...
- PTA喊山
喊山 喊山,是人双手围在嘴边成喇叭状,对着远方高山发出“喂—喂喂—喂喂喂……”的呼唤.呼唤声通过空气的传递,回荡于深谷之间,传送到人们耳中,发出约定俗成的“讯号”,达到声讯传递交流的目的.原来它是彝族 ...
- ZOJ1004 Anagrams by Stack
题目大意:规定 i 为入栈,o 为出栈,现在给两个字符串st1,st2,现在要将st1转化为st2,转化方法是,st1中字符从头开始入栈,并合理出栈构造出st2.请输出所有可能的出入栈步骤. 深度优先 ...
- Euler Sums系列(三)
\[\Large\sum_{n=1}^{\infty}\frac{\left(H_{n}^{(2)}\right)^{2}}{n^{2}}=\frac{19}{24}\zeta(6)+\zeta^{2 ...
- Spring学习(八)
AOP的重要概念 1.切面 : 切点(Pointcut) + Advice[ 在哪里 .加什么 ] 2.Advice: 在 切点 选中的 连接点 "加入" 的 代码 就是 Advi ...
- 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(3)
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...
- vue 使用心得---工作中一些关键点
1.自定义组件 使用 v-for 循环,最好另外多加上 v-bind:key="items_name",这是特殊用的:key,而不是普通的 :属性 例:<Uiroom> ...
- Educational Codeforces Round 80 C. Two Arrays(组合数快速取模)
You are given two integers nn and mm . Calculate the number of pairs of arrays (a,b)(a,b) such that: ...