http://acm.hdu.edu.cn/showproblem.php?pid=1023

如果把栈里面的元素个数表示成状态,每一步(共2 * n步)的状态构成的状态序列的种数就是答案,令dp[i][j]表示第i步栈的状态为j的方案数,则有:

dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j + 1],+1、-1相当于进栈和出栈,需考虑边界条件,详见代码(答案太大,需用大数):

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <map>
#include <stack>
#include <string>
#include <ctime>
#include <queue>
#define mem0(a) memset(a, 0, sizeof(a))
#define mem(a, b) memset(a, b, sizeof(a))
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
#define eps 0.0000001
#define lowbit(x) ((x) & -(x))
#define memc(a, b) memcpy(a, b, sizeof(b))
#define x_x(a) ((a) * (a))
#define LL __int64
#define DB double
#define pi 3.14159265359
#define MD 10000007
#define INF (int)1e9
using namespace std;
struct BigNum{
#define maxlen 10
#define memc(a, b) memcpy(a, b, sizeof(b))
#define mem0(a) memset(a, 0, sizeof(a))
typedef __int64 Num[maxlen + ];
Num num;
char s[maxlen + ];
BigNum operator+(BigNum num2) {
BigNum ans;
mem0(ans.num);
for(int i = ; i <= maxlen; i++) {
ans.num[i] += num[i] + num2.num[i];
ans.num[i + ] += ans.num[i] / (int)1e9;
ans.num[i] %= (int)1e9;
}
return ans;
}
BigNum operator*(BigNum num2) {
BigNum ans;
mem0(ans.num);
for(int i = ; i <= maxlen; i++) {
for(int j = ; j <= maxlen; j++) {
if(i + j - <= maxlen) {
ans.num[i + j - ] += num[i] * num2.num[j];
ans.num[i + j] += ans.num[i + j - ] / (int)1e9;
ans.num[i + j - ] %= (int)1e9;
}
}
}
return ans;
}
void convert() {
int len = strlen(s), cnt = ;
for(int i = len - ; i >= ; i -= ) {
int p = , x = , t = ;
while(i - p >= && p < ) {
x += t * (s[i - p] - '');
p++;
t *= ;
}
num[++cnt] = x;
}
}
void inp() {
mem0(num);
scanf("%s", s);
convert();
}
void outp() {
int p = ;
for(int i = maxlen; i >= ; i--) {
if(num[i]) {
p = i;
break;
}
}
cout<< num[p];
while(--p) {
int a[] = {}, x = num[p];
for(int i = ; i < ; i++) {
a[i] = x % ;
x /= ;
}
for(int i = ; i >= ; i--) {
printf("%d", a[i]);
}
}
}
BigNum(char str[]) {
strcpy(s, str);
mem0(num);
convert();
}
BigNum(){}
};
BigNum f[][];
int main()
{
//freopen("input.txt", "r", stdin);
//freopen("output.txt", "w", stdout);
int n;
while(~scanf("%d", &n)) {
mem0(f);
f[][] = BigNum("");
for(int i = ; i <= * n; i++) {
for(int j = ; j <= n; j++) {
f[i][j] = f[i - ][j + ];
if(j) f[i][j] = f[i][j] + f[i - ][j - ];
}
}
f[ * n][].outp();
cout<< endl;
}
return ;
}

[hdu1023]递推的更多相关文章

  1. 【BZOJ-2476】战场的数目 矩阵乘法 + 递推

    2476: 战场的数目 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 58  Solved: 38[Submit][Status][Discuss] D ...

  2. 从一道NOI练习题说递推和递归

    一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可 ...

  3. Flags-Ural1225简单递推

    Time limit: 1.0 second Memory limit: 64 MB On the Day of the Flag of Russia a shop-owner decided to ...

  4. 利用Cayley-Hamilton theorem 优化矩阵线性递推

    平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...

  5. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

  6. 简单递推 HDU-2108

    要成为一个ACMer,就是要不断学习,不断刷题...最近写了一些递推,发现递推规律还是挺明显的,最简单的斐波那契函数(爬楼梯问题),这个大家应该都会,看一点稍微进阶了一点的,不是简单的v[i] = v ...

  7. [ACM_动态规划] 数字三角形(数塔)_递推_记忆化搜索

    1.直接用递归函数计算状态转移方程,效率十分低下,可以考虑用递推方法,其实就是“正着推导,逆着计算” #include<iostream> #include<algorithm> ...

  8. 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式

    矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d     ...

  9. openjudge1768 最大子矩阵[二维前缀和or递推|DP]

    总时间限制:  1000ms 内存限制:  65536kB 描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵. 比如,如下4 * 4的 ...

随机推荐

  1. G - GCD and LCM 杭电

    Given two positive integers G and L, could you tell me how many solutions of (x, y, z) there are, sa ...

  2. vue2.x学习笔记(七)

    接着前面的内容:https://www.cnblogs.com/yanggb/p/12576797.html. 条件渲染 vue也提供了一些指令,用于条件性地渲染模板中的内容. [v-if]和[v-e ...

  3. 详解 Hashtable

    至于HashTable,本人只想说,除了它们各自的特点是截然相反外,其余性质 以及 用法和HashMap的性质几乎一样, (有关Map集合的基本性质,请观看本人博文-- <详解 Map集合> ...

  4. C#开发BIMFACE系列39 网页集成开发3:审图系统中三维模型比对

    系列目录     [已更新最新开发文章,点击查看详细] 在建筑施工图审查系统中,设计单位提交设计完成的模型/图纸,审查专家审查模型/图纸.审查过程中如果发现不符合规范的地方,则流程退回到设计单位,设计 ...

  5. python 规范篇 如何合理使用 assert

    assert 的合理使用,可以增加代码的健壮度,同时也方便了程序出错时开发人员的定位排查. 什么是 assert? Python 的 assert 语句,可以说是一个 debug 的好工具,主要用于测 ...

  6. CountDownLatch/CyclicBarrier/Semaphore

    CountDownLatch 概念 让一些线程阻塞直到另一些线程完成一系列操作才被唤醒 CountDownLatch主要有两个方法,当一个或多个线程调用await方法时,调用线程就会被阻塞.其它线程调 ...

  7. php json接口demo

    <?php class Student { public $no; public $username; public $password; } $student=new Student(); $ ...

  8. Mozilla开始推送Firefox Preview 5.0版 支持画中画特性

    Mozilla 发布了 5.0 版本的 Firefox Preview 浏览器,根据 GitHub 上的发布说明,这次更新带来了一系列新的改进.其中包含对五个新的附加组件的支持,引入了对 Progre ...

  9. 《Java 开发从入门到精通》—— 2.3 使用IDE工具序

    本节书摘来异步社区<Java 开发从入门到精通>一书中的第2章,第2.3节,作者: 扶松柏 , 陈小玉,更多章节内容可以访问云栖社区"异步社区"公众号查看. 2.3 使 ...

  10. 基于 react 的Java web 应用—— 组件复用(后续需更新)

    前言 实习第二周,被告知要用React与导师进行基于React的Javaweb 的开发,jinzhangaaaaa~由于React 这款框架没学过,看了一峰老师的基础入门教程,硬着头皮开始上了... ...