[hdu1023]递推
http://acm.hdu.edu.cn/showproblem.php?pid=1023
如果把栈里面的元素个数表示成状态,每一步(共2 * n步)的状态构成的状态序列的种数就是答案,令dp[i][j]表示第i步栈的状态为j的方案数,则有:
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j + 1],+1、-1相当于进栈和出栈,需考虑边界条件,详见代码(答案太大,需用大数):
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <map>
#include <stack>
#include <string>
#include <ctime>
#include <queue>
#define mem0(a) memset(a, 0, sizeof(a))
#define mem(a, b) memset(a, b, sizeof(a))
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
#define eps 0.0000001
#define lowbit(x) ((x) & -(x))
#define memc(a, b) memcpy(a, b, sizeof(b))
#define x_x(a) ((a) * (a))
#define LL __int64
#define DB double
#define pi 3.14159265359
#define MD 10000007
#define INF (int)1e9
using namespace std;
struct BigNum{
#define maxlen 10
#define memc(a, b) memcpy(a, b, sizeof(b))
#define mem0(a) memset(a, 0, sizeof(a))
typedef __int64 Num[maxlen + ];
Num num;
char s[maxlen + ];
BigNum operator+(BigNum num2) {
BigNum ans;
mem0(ans.num);
for(int i = ; i <= maxlen; i++) {
ans.num[i] += num[i] + num2.num[i];
ans.num[i + ] += ans.num[i] / (int)1e9;
ans.num[i] %= (int)1e9;
}
return ans;
}
BigNum operator*(BigNum num2) {
BigNum ans;
mem0(ans.num);
for(int i = ; i <= maxlen; i++) {
for(int j = ; j <= maxlen; j++) {
if(i + j - <= maxlen) {
ans.num[i + j - ] += num[i] * num2.num[j];
ans.num[i + j] += ans.num[i + j - ] / (int)1e9;
ans.num[i + j - ] %= (int)1e9;
}
}
}
return ans;
}
void convert() {
int len = strlen(s), cnt = ;
for(int i = len - ; i >= ; i -= ) {
int p = , x = , t = ;
while(i - p >= && p < ) {
x += t * (s[i - p] - '');
p++;
t *= ;
}
num[++cnt] = x;
}
}
void inp() {
mem0(num);
scanf("%s", s);
convert();
}
void outp() {
int p = ;
for(int i = maxlen; i >= ; i--) {
if(num[i]) {
p = i;
break;
}
}
cout<< num[p];
while(--p) {
int a[] = {}, x = num[p];
for(int i = ; i < ; i++) {
a[i] = x % ;
x /= ;
}
for(int i = ; i >= ; i--) {
printf("%d", a[i]);
}
}
}
BigNum(char str[]) {
strcpy(s, str);
mem0(num);
convert();
}
BigNum(){}
};
BigNum f[][];
int main()
{
//freopen("input.txt", "r", stdin);
//freopen("output.txt", "w", stdout);
int n;
while(~scanf("%d", &n)) {
mem0(f);
f[][] = BigNum("");
for(int i = ; i <= * n; i++) {
for(int j = ; j <= n; j++) {
f[i][j] = f[i - ][j + ];
if(j) f[i][j] = f[i][j] + f[i - ][j - ];
}
}
f[ * n][].outp();
cout<< endl;
}
return ;
}
[hdu1023]递推的更多相关文章
- 【BZOJ-2476】战场的数目 矩阵乘法 + 递推
2476: 战场的数目 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 58 Solved: 38[Submit][Status][Discuss] D ...
- 从一道NOI练习题说递推和递归
一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可 ...
- Flags-Ural1225简单递推
Time limit: 1.0 second Memory limit: 64 MB On the Day of the Flag of Russia a shop-owner decided to ...
- 利用Cayley-Hamilton theorem 优化矩阵线性递推
平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
- 简单递推 HDU-2108
要成为一个ACMer,就是要不断学习,不断刷题...最近写了一些递推,发现递推规律还是挺明显的,最简单的斐波那契函数(爬楼梯问题),这个大家应该都会,看一点稍微进阶了一点的,不是简单的v[i] = v ...
- [ACM_动态规划] 数字三角形(数塔)_递推_记忆化搜索
1.直接用递归函数计算状态转移方程,效率十分低下,可以考虑用递推方法,其实就是“正着推导,逆着计算” #include<iostream> #include<algorithm> ...
- 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d ...
- openjudge1768 最大子矩阵[二维前缀和or递推|DP]
总时间限制: 1000ms 内存限制: 65536kB 描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵. 比如,如下4 * 4的 ...
随机推荐
- Nginx知多少系列之(七)负载均衡策略
目录 1.前言 2.安装 3.配置文件详解 4.工作原理 5.Linux下托管.NET Core项目 6.Linux下.NET Core项目负载均衡 7.负载均衡策略 8.加权轮询(round rob ...
- APP测试和WEB测试区别
App测试web测试的区别 单纯从功能测试的层面上来讲的话,APP 测试.web 测试 在流程和功能测试上是没有区别的 根据两者载体不一样,则区别如下: 1.兼容性测试:web端兼容浏览器,app端兼 ...
- kubernetes的Statefulset介绍
StatefulSet是一种给Pod提供唯一标志的控制器,他可以保证部署和扩展的顺序. Pod一致性 包含次序(启动和停止次序).网络一致性.此一致性和Pod相关.与被调度到哪个Node节点无关. 稳 ...
- sort()实现排序的原理
很多人都只知道sort()是通过快速排序实现,但它并不只是简单的快排:首先它对普通的快速排序进行了优化:此外,它还结合了插入 排序和堆排序.系统根据数据形式和数据量,来选择合适的排序方法,这并不是说每 ...
- Netty随记之ChannelInboundHandlerAdapter、SimpleChannelInboundHandler
ChannelInboundHandlerAdapter ChannelInboundHandlerAdapter是ChannelInboundHandler的一个简单实现,默认情况下不会做任何处理, ...
- 父级元素绑定定mouseout和mouseover,移过子元素是都会触发
2019独角兽企业重金招聘Python工程师标准>>> mouseover与mouseenter 不论鼠标指针穿过被选元素或其子元素,都会触发 mouseover 事件. 只有在鼠标 ...
- Openstack HA集群5-Keystone HA
# yum install -y openstack-keystone httpd mod_wsgi # mysql -u root -p -e "CREATE DATABASE keyst ...
- System Call
内容 设计系统调用,将系统的相关信息(CPU型号.操作系统的版本号.系统中的进程等类似于Windows的任务管理器的信息)以文本形式列表显示于屏幕,并编写用户程序予以验证. 思想 系统调用是应用程序和 ...
- nginx经验分享
如果我们在使用启动nginx时,遇到这样的提示: nginx: [alert] could not open error log file: open() "/usr/local/var/l ...
- python(面向对象-类封装调用)
一.面对对象思想 (1)大家肯定听过 Python 中”一切皆对象“的说法,但可能并不了解它的具体含义,只是在学习的时候听说 Python 是面向对象的编程语言,本节将向大家详细介绍 Python 面 ...