多线程实践—Python多线程编程
多线程实践
前面的一些文章和脚本都是只能做学习多线程的原理使用,实际上什么有用的事情也没有做。接下来进行多线程的实践,看一看在实际项目中是怎么使用多线程的。
图书排名示例
Bookrank.py:
该脚本通过单线程进行下载图书排名信息的调用
from atexit import register
from re import compile
from threading import Thread
from time import sleep, ctime
import requests
REGEX = compile('#([\d,]+) in Books')
AMZN = 'https://www.amazon.com/dp/'
ISBNS = {
'': 'Core Python Programming',
'': 'Python Web Development with Django',
'': 'Python Fundamentals',
}
def getRanking(isbn):
url = '%s%s' % (AMZN, isbn)
page = requests.get(url)
data = page.text
return REGEX.findall(data)[0]
def _showRanking(isbn):
print '- %r ranked %s' % (
ISBNS[isbn], getRanking(isbn))
def _main():
print 'At', ctime(), 'on Amazon'
for isbn in ISBNS:
_showRanking(isbn)
@register
def _atexit():
print 'all DONE at:', ctime()
if __name__ == '__main__':
_main()
输出结果为:
/usr/bin/python ~/Test_Temporary/bookrank.py
At Sat Jul 28 17:16:51 2018 on Amazon
- 'Core Python Programming' ranked 322,656
- 'Python Fundamentals' ranked 4,739,537
- 'Python Web Development with Django' ranked 1,430,855
all DONE at: Sat Jul 28 17:17:08 2018
引入线程
上面的例子只是一个单线程程序,下面引入线程,并使用多线程再执行程序对比各自所需的时间。
将上面脚本中 _main() 函数的 _showRanking(isbn) 修改以下代码:
Thread(target=_showRanking, args=(isbn,)).start()
再次执行查看返回结果:
/usr/bin/python ~/Test_Temporary/bookrank.py
At Sat Jul 28 17:39:16 2018 on Amazon
- 'Python Fundamentals' ranked 4,739,537
- 'Python Web Development with Django' ranked 1,430,855
- 'Core Python Programming' ranked 322,656
all DONE at: Sat Jul 28 17:39:19 2018
从两个的输出结果中可以看出,使用单线程时总体完成的时间为 7s ,而使用多线程时,总体完成时间为 3s 。另外一个需要注意的是,单线程版本是按照变量的顺序输出,而多线程版本按照完成的顺序输出。
同步原语
一般在多线程代码中,总会有一些特定的函数或代码块不希望(或不应该)被多个线程同时执行,通常包括修改数据库、更新文件或其它会产生竟态条件的类似情况。这就是需要使用同步的情况。
当任意数量的线程可以访问临界区的代码,但给定的时刻只有一个线程可以通过时,就是使用同步的时候了;
程序员选择适合的同步原语,或者线程控制机制来执行同步;
进程同步有不同的类型【参见:https://en.wikipedia.org/wiki/Synchronization_(computer_science) 】
同步原语有:锁/互斥、信号量。锁是最简单、最低级的机制,而信号量用于多线程竞争有限资源的情况。
锁示例
锁有两种状态:锁定和未锁定。而且它也只支持两个函数:获得锁和释放锁。
当多线程争夺锁时,允许第一个获得锁的线程进入临界区,并执行代码;
所有之后到达的线程将被阻塞,直到第一个线程结束退出临界区并释放锁;
锁被释放后,其它等待的线程可以继续争夺锁,并进入临界区;
被阻塞的线程没有顺序,不会先到先得,胜出的线程是不确定的。
代码示例(mtsleepF.py):
*注:该脚本派生了随机数量的线程,每个线程执行结束时会进行输出
# -*- coding=utf-8 -*-
from atexit import register
from random import randrange
from threading import Thread, currentThread
from time import sleep, ctime
class CleanOutputSet(set):
def __str__(self):
return ', '.join(x for x in self)
loops = (randrange(2, 5) for x in range(randrange(3, 7)))
remaining = CleanOutputSet()
def loop(nsec):
myname = currentThread().name
remaining.add(myname)
print('这个是目前线程池中的线程:', remaining)
print('[%s] Started %s' % (ctime(), myname))
sleep(nsec)
remaining.remove(myname)
print('[%s] Completed %s (%d secs)' % (ctime(), myname, nsec))
print(' (remaining: %s)' % (remaining or 'None'))
def _main():
for pause in loops:
Thread(target=loop, args=(pause,)).start()
@register
def _atexit():
print('all DONE at:%s' % ctime())
if __name__ == '__main__':
_main()
执行后的输出结果:
/usr/local/bin/python3.6 /Users/zhenggougou/Project/Test_Temporary/mtsleepF.py
这个是目前线程池中的线程: Thread-1
[Sat Jul 28 21:09:44 2018] Started Thread-1
这个是目前线程池中的线程: Thread-2, Thread-1
[Sat Jul 28 21:09:44 2018] Started Thread-2
这个是目前线程池中的线程: Thread-3, Thread-2, Thread-1
[Sat Jul 28 21:09:44 2018] Started Thread-3
这个是目前线程池中的线程: Thread-3, Thread-2, Thread-4, Thread-1
[Sat Jul 28 21:09:44 2018] Started Thread-4
这个是目前线程池中的线程: Thread-5, Thread-4, Thread-3, Thread-2, Thread-1
[Sat Jul 28 21:09:44 2018] Started Thread-5
这个是目前线程池中的线程: Thread-5, Thread-6, Thread-4, Thread-3, Thread-2, Thread-1
[Sat Jul 28 21:09:44 2018] Started Thread-6
[Sat Jul 28 21:09:46 2018] Completed Thread-2 (2 secs)
[Sat Jul 28 21:09:46 2018] Completed Thread-1 (2 secs)
[Sat Jul 28 21:09:46 2018] Completed Thread-3 (2 secs)
(remaining: Thread-5, Thread-6, Thread-4)
[Sat Jul 28 21:09:46 2018] Completed Thread-6 (2 secs)
(remaining: Thread-5, Thread-4)
[Sat Jul 28 21:09:46 2018] Completed Thread-4 (2 secs)
(remaining: Thread-5)
(remaining: Thread-5)
[Sat Jul 28 21:09:46 2018] Completed Thread-5 (2 secs)
(remaining: None)
(remaining: None)
all DONE at:Sat Jul 28 21:09:46 2018
从执行结果中可以看出,有的时候可能会存在多个线程并行执行操作删除 remaining 集合中数据的情况。比如上面结果中,线程1、2、3 就是同时执行去删除集合中数据的。所以为了避免这种情况需要加锁,通过引入 Lock (或 RLock),然后创建一个锁对象来保证数据的修改每次只有一个线程能操作。
首先先导入锁类,然后创建锁对象
from threading import Thread, Lock, currentThreadlock = Lock()然后使用创建的锁,将上面 mtsleepF.py 脚本中 loop() 函数做以下改变:
def loop(nsec):
myname = currentThread().name
lock.acquire() # 获取锁
remaining.add(myname)
print('这个是目前线程池中的线程:', remaining)
print('[%s] Started %s' % (ctime(), myname))
lock.release() # 释放锁
sleep(nsec)
lock.acquire() # 获取锁
remaining.remove(myname)
print('[%s] Completed %s (%d secs)' % (ctime(), myname, nsec))
print(' (remaining: %s)' % (remaining or 'None'))
lock.release() # 释放锁
在操作变量的前后需要进行获取锁和释放锁的操作,以保证在修改变量时只有一个线程进行。上面的代码有两处修改变量,一是:remaining.add(myname) ,二是:remaining.remove(myname)。 所以上面代码中有两次获取锁和释放锁的操作。其实还有一种方案可以不再调用锁的 acquire() 和 release() 方法,二是使用上下文管理,进一步简化代码。代码如下:
def loop(nesc):
myname = currentThread().name
with lock:
remaining.add(myname)
print('[{0}] Started {1}'.format(ctime(), myname))
sleep(nesc)
with lock:
remaining.remove(myname)
print('[{0}] Completed {1} ({2} secs)'.format(ctime(), myname, nesc))
print(' (remaining: {0})'.format(remaining or 'None'))
信号量示例
锁非常易于理解和实现,也很容易决定何时需要它们,然而,如果情况更加复杂,可能需要一个更强大的同步原语来代替锁。
信号量是最古老的同步原语之一。它是一个计数器,当资源消耗时递减,当资源释放时递增。可以认为信号量代表它们的资源可用或不可用。信号量比锁更加灵活,因为可以有多个线程,每个线程都拥有有限资源的一个实例。
消耗资源使计数器递减的操作习惯上称为 P() —— acquire ;
当一个线程对一个资源完成操作时,该资源需要返回资源池中,这个操作一般称为 V() —— release 。
示例,糖果机和信号量(candy.py):
*注:该脚本使用了锁和信号量来模拟一个糖果机
# -*- coding=utf-8 -*-
from atexit import register
from random import randrange
from threading import BoundedSemaphore, Lock, Thread
from time import sleep, ctime
lock = Lock()
MAX = 5
candytray = BoundedSemaphore(MAX)
def refill():
lock.acquire()
print('Refilling candy')
try:
candytray.release() # 释放资源
except ValueError:
print('full, skipping')
else:
print('OK')
lock.release()
def buy():
lock.acquire()
print('Buying candy...')
if candytray.acquire(False): # 消耗资源
print('OK')
else:
print('empty, skipping')
lock.release()
def producer(loops):
for i in range(loops):
refill()
sleep(randrange(3))
def consumer(loops):
for i in range(loops):
buy()
sleep(randrange(3))
def _main():
print('starting at:{0}'.format(ctime()))
nloops = randrange(2, 6)
print('THE CANDY MACHINE (full with %d bars)!' % MAX)
Thread(target=consumer, args=(randrange(nloops, nloops+MAX+2),)).start()
Thread(target=producer, args=(nloops,)).start()
@register
def _atexit():
print('all DONE at:{0}'.format(ctime()))
if __name__ == '__main__':
_main()
执行结果为:
/usr/local/bin/python3.6 ~/Test_Temporary/candy.py
starting at:Sun Jul 29 21:12:50 2018
THE CANDY MACHINE (full with 5 bars)!
Buying candy...
OK
Refilling candy
OK
Refilling candy
full, skipping
Buying candy...
OK
Buying candy...
OK
all DONE at:Sun Jul 29 21:12:52 2018
多线程实践—Python多线程编程的更多相关文章
- Linux多线程实践(7) --多线程排序对比
屏障 int pthread_barrier_init(pthread_barrier_t *restrict barrier, const pthread_barrierattr_t *restri ...
- python 并发编程 多线程 目录
线程理论 python 并发编程 多线程 开启线程的两种方式 python 并发编程 多线程与多进程的区别 python 并发编程 多线程 Thread对象的其他属性或方法 python 并发编程 多 ...
- 初识python多线程
目录 GIL锁 Thread类构造方法 Lock类.Rlock类 参考: python3多线程--官方教程中文版 python多线程-1 python多线程-2.1 python多线程-2.2 pyt ...
- Python网络编程—socket(二)
http://www.cnblogs.com/phennry/p/5645369.html 接着上篇博客我们继续介绍socket网络编程,今天主要介绍的内容:IO多路复用.多线程.补充知识点. 一.I ...
- Python - 并发编程,多进程,多线程
传送门 https://blog.csdn.net/jackfrued/article/details/79717727 在此基础上实践和改编某些点 1. 并发编程 实现让程序同时执行多个任务也就是常 ...
- python多线程编程
Python多线程编程中常用方法: 1.join()方法:如果一个线程或者在函数执行的过程中调用另一个线程,并且希望待其完成操作后才能执行,那么在调用线程的时就可以使用被调线程的join方法join( ...
- 关于python多线程编程中join()和setDaemon()的一点儿探究
关于python多线程编程中join()和setDaemon()的用法,这两天我看网上的资料看得头晕脑涨也没看懂,干脆就做一个实验来看看吧. 首先是编写实验的基础代码,创建一个名为MyThread的 ...
- 深入 HTML5 Web Worker 应用实践:多线程编程
深入 HTML5 Web Worker 应用实践:多线程编程 HTML5 中工作线程(Web Worker)简介 至 2008 年 W3C 制定出第一个 HTML5 草案开始,HTML5 承载了越来越 ...
- day-3 python多线程编程知识点汇总
python语言以容易入门,适合应用开发,编程简洁,第三方库多等等诸多优点,并吸引广大编程爱好者.但是也存在一个被熟知的性能瓶颈:python解释器引入GIL锁以后,多CPU场景下,也不再是并行方式运 ...
随机推荐
- Servlet 和 Servlet容器
Servlet 很多同学可能跟我一样始终没有搞清楚到底什么是 Servlet,什么是 Servlet 容器.网上看了很多帖子,或许人家说的很清楚,但是自己的那个弯弯就是拐不过来. 想了很久说一下自己的 ...
- 树莓派4b 上手三板斧
树莓派4b 上手三板斧 1.无屏幕和网线连接准备 windows / mac 电脑下载安装Notepad++ 新建文件并保存为ssh(该文件为空文件) 新建文件wpa_supplicant.conf ...
- 博云DevOps 3.0重大升级 | 可用性大幅提升、自研需求管理&自定义工作流上线,满足客户多样化需求
DevOps能够为企业带来更高的部署频率.更短的交付周期与更快的客户响应速度.标准化.规范化的管理流程,可视化和数字化的研发进度管理和可追溯的版本也为企业带来的了更多的价值.引入DevOps成为企业实 ...
- C1FlexGrid双grid滚动条联动
利用AfterScroll事件,来实现双grid联动. private void Grid_AfterScroll(object sender, RangeEventArgs e) { try { i ...
- python爬虫-User-Agent的伪造
某些网站会识别python爬虫程序并阻断,通过构造User_Agent可以抵抗某些反爬虫机制 用fake-useragent这个库就能很好的实现 pycharm中安装步骤 产生随机的User-Agen ...
- 数据库SQL---数据库、基本表、视图、索引的定义、修改、删除
1.SQL(结构化查询语言)的组成:数据定义语言DDL.数据操纵语言DML.数据控制语言DCL.其他. 2.SQL语言的功能: 1)数据查询:SELECT 2)数据定义:CREATE DROP ...
- java中Runnable和Callable的区别
文章目录 运行机制 返回值的不同 Exception处理 java中Runnable和Callable的区别 在java的多线程开发中Runnable一直以来都是多线程的核心,而Callable是ja ...
- Linux网络服务第五章NFS共享服务
1.笔记 NFS一般用在局域网中,网络文件系统c/s格式 服务端s:设置一个共享目录 客户端c:挂载使用这个共享目录 rpc:111远程过程调用机制 Showmount -e:查看共享目录信息 def ...
- 安装并使用pyecharts库
在cmd命令行中输入安装命令, pyecharts库的安装命令如下: pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts ...
- 精确计算微信小程序scrollview高度,全机型适配
众所周知,可以滑动的 scroll 组件在移动端非常的重要,几乎每个页面都要用到. 而小程序的 scroll-view 组件就比较坑了,非得指定一个高度才能正常使用.布局复杂的时候谁还给你算高度啊.. ...