这道题难就难在建图吧,建图懂了之后,跑一遍最长路就好了(也就是关键路径,但是不会用拓补排序求qnq,wtcl)。


怎么建图呢?先不管输入的S,看下面的输入,直接建有向边即可,权值为x。如果现在跑最长路的话,没有一个出发点,那是不行的,所以我们可以想到建一个点,去连接一下入度为0的点,边权为多少呢?这就跟S挂钩了,推下样例,很容易发现边权即为输入的S。这个点的其实就叫超级源点,是一个很重要的思想,在这种题里面建超级源点很常见,当然,还有超级汇点,就是把所有出度为0的点连向一个点,这道题还用不上。现在,我们就可以写下最长路啦(因为是最长路所以不能用迪杰斯特拉算法!!!)。

交上去,好,只有80分。为什么呢?

连输入的S都没用完你想得满分?当我们建超级源点时,只向入度为0的点连了边,那么可不可以给其他点连呢?答案是可以的。设\(dis_i\)为超级源点到i的最长路,那么一定有可能\(dis_i\)小于一开始给出的S,这时肯定选择S啊,所以我们可以把超级源点向其他的点连一条S的边,这样就把所有情况考虑完了。

满分代码~

#include <bits/stdc++.h>
using namespace std;
int n , m , c , ans;
int dis[100010] , vis[100010];
vector<pair<int , int> > e[100010];
void spfa(int s){
vis[s] = 1; //最长路dis赋值为0
queue<int> q;
q.push(s);
while(!q.empty()){
int x = q.front();
q.pop();
vis[x] = 0;
for(int i = 0; i < e[x].size(); i++){
int nx = e[x][i].first , w = e[x][i].second;
if(dis[nx] < dis[x] + w){ //注意是最长路哦!!!
dis[nx] = dis[x] + w;
if(!vis[nx]){
vis[nx] = 1;
q.push(nx);
}
}
}
}
}
int main(){
cin >> n >> m >> c;
for(int i = 1; i <= n; i++){
int x;
cin >> x;
e[0].push_back(make_pair(i , x)); //建超级源点
}
for(int i = 1; i <= c; i++){
int x , y , z;
cin >> x >> y >> z;
e[x].push_back(make_pair(y , z));
}
spfa(0); //从超级源点开始跑,而不是1
for(int i = 1; i <= n; i++) cout << dis[i] << endl;
return 0;
}

双倍经验时间:

P1113

洛谷 P6145 【[USACO20FEB]Timeline G】的更多相关文章

  1. 【题解】洛谷P3119 Grass Cownoisseur G

    题面:洛谷P3119 Grass Cownoisseur G 本人最近在熟悉Tarjan的题,刷了几道蓝题后,我飘了 趾高气扬地点开这道紫题,我一瞅: 哎呦!这不是分层图吗? 突然就更飘了~~~ 用时 ...

  2. 洛谷 [USACO17OPEN]Bovine Genomics G奶牛基因组(金) ———— 1道骗人的二分+trie树(其实是差分算法)

    题目 :Bovine Genomics G奶牛基因组 传送门: 洛谷P3667 题目描述 Farmer John owns NN cows with spots and NN cows without ...

  3. BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】

    题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...

  4. 洛谷P3104 Counting Friends G 题解

    题目 [USACO14MAR]Counting Friends G 题解 这道题我们可以将 \((n+1)\) 个边依次去掉,然后分别判断去掉后是否能满足.注意到一点, \(n\) 个奶牛的朋友之和必 ...

  5. 题解 洛谷 P2287 [USACO07NOV]Sunscreen G

    原题 传送门 有C个奶牛去晒太阳 (1 <=C <= 2500),每个奶牛各自能够忍受的阳光强度有一个最小值和一个最大值(minSPFi and maxSPFi),太大就晒伤了,太小奶牛没 ...

  6. 洛谷 P6144 - [USACO20FEB]Help Yourself P(二项式定理+线段树)

    题面传送门 题意: 给定 \(n\) 条线段,第 \(i\) 条线段左右端点分别为 \(l_i,r_i\) 定义一个线段集合的复杂度为其形成的连通块的个数的 \(k\) 次方. 求这 \(n\) 条线 ...

  7. 洛谷P2865 [USACO06NOV]Roadblocks G(次短路)

    一个次短路的问题,可以套用dijkstra求最短路的方法,用dis[0][i]表示最短路:dis[1][i]表示次短路,优先队列中存有最短路和次短路,然后每次找到一条道路对他进行判断,更新最短或次短路 ...

  8. 不失一般性和快捷性地判定决策单调(洛谷P1912 [NOI2009]诗人小G)(动态规划,决策单调性,单调队列)

    洛谷题目传送门 闲话 看完洛谷larryzhong巨佬的题解,蒟蒻一脸懵逼 如果哪年NOI(放心我这样的蒟蒻是去不了的)又来个决策单调性优化DP,那蒟蒻是不是会看都看不出来直接爆\(0\)?! 还是要 ...

  9. 洛谷 P3659 [USACO17FEB]Why Did the Cow Cross the Road I G

    //神题目(题目一开始就理解错了)... 题目描述 Why did the cow cross the road? Well, one reason is that Farmer John's far ...

随机推荐

  1. Java实现蓝桥杯VIP算法训练 最大获利

    试题 算法训练 最大获利 资源限制 时间限制:1.0s 内存限制:256.0MB 问题描述 Chakra是一位年轻有为的企业家,最近他在进军餐饮行业.他在各地开拓市场,共买下了N个饭店.在初期的市场调 ...

  2. Java实现UVA10131越大越聪明(蓝桥杯每周一题)

    10131越大越聪明(蓝桥杯每周一题) [问题描述] 一些人认为,大象的体型越大,脑子越聪明.为了反驳这一错误观点,你想要分析一组大象的数据,找出尽量 多的大象组成一个体重严格递增但 IQ 严格递减的 ...

  3. java实现自行车行程

    ** 自行车行程** 计算行程 低碳生活,有氧运动.骑自行车出行是个好主意.小明为自己的自行车装了个计数器,可以计算出轮子转动的圈数.在一次骑车旅行中,出发时计算器的示数为begin,到达目的地时的示 ...

  4. java实现第四届蓝桥杯世纪末星期

    世纪末星期 题目描述 曾有邪教称1999年12月31日是世界末日.当然该谣言已经不攻自破. 还有人称今后的某个世纪末的12月31日,如果是星期一则会- 有趣的是,任何一个世纪末的年份的12月31日都不 ...

  5. nginx下通过子路径配置多个vue单页应用的方法

    千辛万苦在Stack Overflow上找来的,记下吧. https://stackoverflow.com/q/31519505/13651734 我的需求是 首页:/ 项目a:/aaa 项目 b: ...

  6. 数据误操作,删库跑路?教你使用ApexSQLLog工具从 SQLServer日志恢复数据!

    前几天同事不小心误操作,将SQLServer库的一张表的一个状态字段给刷成了一个统一状态,由于是update执行所以原来的相关状态无法确定.发生这种事情的时候我的小伙伴背后 一凉,估计心里里面想这怕是 ...

  7. ubuntu12.04 qtcreate支持中文输入

    1.sudo apt-get install ibus-qt4 2.重启电脑 reboot

  8. jreble备注

    版本:2019.1.4 激活URL:http://jrebel.pyjuan.com/36931214-7bb6-42d4-afd7-26eb5628e004

  9. ArrayList、LinkedList、Vector、Array和HashMap、HashTable

    就 ArrayList 与 Vector 主要从二方面来说. 一.同步性:Vector 是线程安全的,也就是说是同步的,而ArrayList 是线程序不安全的,不是同步的 二.数据增长:当需要增长时, ...

  10. centos7上安装redis以及PHP安装redis扩展(二)

    PHP 使用 Redis 安装 开始在 PHP 中使用 Redis 前, 我们需要确保已经安装了 redis 服务及 PHP redis 驱动,且你的机器上能正常使用 PHP. 接下来让我们安装 PH ...