#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/calib3d/calib3d.hpp" using namespace cv; void readme(); /** @function main */
int main( int argc, char** argv )
{
if( argc != )
{ readme(); return -; } Mat img_object = imread( argv[], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_scene = imread( argv[], CV_LOAD_IMAGE_GRAYSCALE ); if( !img_object.data || !img_scene.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -; } //-- Step 1: Detect the keypoints using SURF Detector
int minHessian = ; SurfFeatureDetector detector( minHessian ); std::vector<KeyPoint> keypoints_object, keypoints_scene; detector.detect( img_object, keypoints_object );
detector.detect( img_scene, keypoints_scene ); //-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor; Mat descriptors_object, descriptors_scene; extractor.compute( img_object, keypoints_object, descriptors_object );
extractor.compute( img_scene, keypoints_scene, descriptors_scene ); //-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_object, descriptors_scene, matches ); double max_dist = ; double min_dist = ; //-- Quick calculation of max and min distances between keypoints
for( int i = ; i < descriptors_object.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
} printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist ); //-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector< DMatch > good_matches; for( int i = ; i < descriptors_object.rows; i++ )
{ if( matches[i].distance < *min_dist )
{ good_matches.push_back( matches[i]); }
} Mat img_matches;
drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
good_matches, img_matches, Scalar::all(-), Scalar::all(-),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); //-- Localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene; for( int i = ; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
} Mat H = findHomography( obj, scene, CV_RANSAC ); //-- Get the corners from the image_1 ( the object to be "detected" )
std::vector<Point2f> obj_corners();
obj_corners[] = cvPoint(,); obj_corners[] = cvPoint( img_object.cols, );
obj_corners[] = cvPoint( img_object.cols, img_object.rows ); obj_corners[] = cvPoint( , img_object.rows );
std::vector<Point2f> scene_corners(); perspectiveTransform( obj_corners, scene_corners, H); //-- Draw lines between the corners (the mapped object in the scene - image_2 )
line( img_matches, scene_corners[] + Point2f( img_object.cols, ), scene_corners[] + Point2f( img_object.cols, ), Scalar(, , ), );
line( img_matches, scene_corners[] + Point2f( img_object.cols, ), scene_corners[] + Point2f( img_object.cols, ), Scalar( , , ), );
line( img_matches, scene_corners[] + Point2f( img_object.cols, ), scene_corners[] + Point2f( img_object.cols, ), Scalar( , , ), );
line( img_matches, scene_corners[] + Point2f( img_object.cols, ), scene_corners[] + Point2f( img_object.cols, ), Scalar( , , ), ); //-- Show detected matches
imshow( "Good Matches & Object detection", img_matches ); waitKey();
return ;
} /** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }

OpenCV 使用二维特征点(Features2D)和单映射(Homography)寻找已知物体的更多相关文章

  1. OpenCV使用二维特征点(Features2D)和单映射(Homography)寻找已知物体

    使用二维特征点(Features2D)和单映射(Homography)寻找已知物体 目标 在本教程中我们将涉及以下内容: 使用函数 findHomography 寻找匹配上的关键点的变换. 使用函数  ...

  2. OpenCV开发笔记(六十九):红胖子8分钟带你使用传统方法识别已知物体(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  3. 开发环境配置--Ubuntu+Qt4+OpenCV(二)

    同系列文章 1. 开发环境配置--Ubuntu+Qt4+OpenCV(一) 2. 开发环境配置--Ubuntu+Qt4+OpenCV(二) 3. 开发环境配置--Ubuntu+Qt4+OpenCV(三 ...

  4. 使用OpenCV查找二值图中最大连通区域

    http://blog.csdn.net/shaoxiaohu1/article/details/40272875 使用OpenCV查找二值图中最大连通区域 标签: OpenCVfindCoutour ...

  5. OpenCV图像变换二 投影变换与极坐标变换实现圆形图像修正

    投影变换 在放射变换中,物体是在二维空间中变换的.如果物体在三维空间中发生了旋转,那么这种变换就成为投影变换,在投影变换中就会出现阴影或者遮挡,我们可以运用二维投影对三维投影变换进行模块化,来处理阴影 ...

  6. PyTorch深度学习实践——处理多维特征的输入

    处理多维特征的输入 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩哔哩_bilibili 这一讲介绍输入为多维数据时的分类. 一个数据集 ...

  7. VS2010/MFC编程入门之二(利用MFC向导生成单文档应用程序框架)

    VS2010/MFC编程入门之二(利用MFC向导生成单文档应用程序框架)-软件开发-鸡啄米 http://www.jizhuomi.com/software/141.html   上一讲中讲了VS20 ...

  8. 第二十二章 Django会话与表单验证

    第二十二章 Django会话与表单验证 第一课 模板回顾 1.基本操作 def func(req): return render(req,'index.html',{'val':[1,2,3...]} ...

  9. opencv统计二值图黑白像素个数

    #include "iostream" #include "queue" #include "Windows.h" #include < ...

随机推荐

  1. .net core excel导入导出

    做的上一个项目用的是vs2013,传统的 Mvc模式开发的,excel报表的导入导出都是那几段代码,已经习惯了. 导入:string filename = ExcelFileUpload.FileNa ...

  2. JAVA 创建文件和文件夹,删除文件和文件夹的实用工具

    package com.file; import java.io.File; import java.io.IOException; //创建新文件和目录 public class CCRDFile ...

  3. 转载:Apache优化:修改最大并发连接数

    本文转自:https://blog.csdn.net/bjash/article/details/50394894 Apache是一个跨平台的web服务器,由于其简单.稳定安全的特性,被广泛应用于计算 ...

  4. Python 安装modules问题及import问题

    >>>modules问题 在学习Python的数据可视化时,安装了matplotlib,在安装完成后还特意在终端测试了一下,结果显示能正常import 但是在sublime Text ...

  5. ubuntu下git的使用

    1.安装git sudo apt-get install git sudo apt-get install git-core 2.配置git lzb@lzb:~$ git config --globa ...

  6. 吴裕雄--天生自然 PHP开发学习:魔术常量

    <?php echo '这是第 " ' . __LINE__ . ' " 行'; ?> <?php echo '该文件位于 " ' . __FILE__ ...

  7. PAT Advanced 1050 String Subtraction (20) [Hash散列]

    题目 Given two strings S1 and S2, S = S1 – S2 is defined to be the remaining string afer taking all th ...

  8. Ivory Coast Map

    Fun Facts about Cote d'Ivoire The Republic of Cote d'Ivoire (previously known as the Ivory Coast) is ...

  9. protobuf编译工具使用

    1.下载,配置环境变量 下载地址:https://github.com/google/protobuf/releases,选择protoc-xxx-win64.zip下载 把.exe文件的位置加入到P ...

  10. Python 进阶 - 面向对象

    Python 面向对象 面向过程 把完成某个需求的所有步骤,从头到尾逐步实现 根据开发需求,将某些功能独立的代码封装成一个又一个函数 最后完成的代码,就是顺序地调用不同的函数 面向过程特点: 注重步骤 ...