POJ 1061:青蛙的约会
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 95878 | Accepted: 17878 |
Description
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
Output
Sample Input
1 2 3 4 5
Sample Output
4
题意就是解一个方程,即(x+m*t)-(y+n*t)=p*L。求满足方程的最小t。将方程变换为(n-m)*t+p*L=x-y。这个方程里面x,y,n,m都已知。
一开始不知道扩展欧几里得的方法,就一直遍历判断看能不能有符合条件的数值,提交了44次还是TLE。。。
(摘自百度百科)扩展欧几里德:
扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式: ax+by = gcd(a,
b) =d(解一定存在,根据数论中的相关定理)。
欧几里德算法
概述
欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:gcd函数就是用来求(a,b)的最大公约数的。gcd函数的基本性质:gcd(a,b)=gcd(b,a)=gcd(-a,b)=gcd(|a|,|b|)
公式表述
gcd(a,b)=gcd(b,a mod b)
证明:a可以表示成a = kb + r,则r = a mod b
假设d是a,b的一个公约数,则有d|a,
d|b,而r = a - kb,因此d|r。因此d是(b,a mod b)的公约数。
假设d 是(b,a mod b)的公约数,则d
| b , d |r ,但是a = kb +r,因此d也是(a,b)的公约数
因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证。
C++语言实现
<span style="font-size:12px;">#include<iostream>
#include<cstdio>
using namespace std;
int x,y,q;
void extend_Eulid(int a,int b){
if(b==0){
x=1;y=0;q=a;
return;
}
extend_Eulid(b,a%b);
int temp=x;
x=y;
y=temp-a/b*y;
}
int main(){
int a,b;
cin>>a>>b;
extend_Eulid(a,b);
printf("%d=(%d)*%d+(%d)*%d\n",q,x,a,y,b);
return 0;
}</span>
扩展算法
对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对
x,y ,使得 gcd(a,b)=ax+by。
c++语言实现
<pre name="code" class="html">int exgcd(ll a,ll b,ll &x,ll &y)
{
if(a==0)
{
x=0;y=1;
return b;
}
else
{
ll tx,ty;
ll d=exgcd(b%a,a,tx,ty);
x=ty-(b/a)*tx;
y=tx;
return d;
}
}
代码:
#include <iostream>
#include <vector>
#include <string>
#include <cstring>
#include <algorithm>
using namespace std; long long d; void ex_gcd(long long a,long long b,long long &xx,long long &yy)
{
if(b==0)
{
xx=1;
yy=0;
d=a;//d为求出来的a,b的最小公约数
}
else
{
ex_gcd(b,a%b,xx,yy); long long t=xx;
xx=yy;
yy=t-(a/b)*yy;
}
} int main()
{
long long x,y,m,n,L,xx,yy;
cin>>x>>y>>m>>n>>L; ex_gcd(n-m,L,xx,yy); if((x-y)%d)//如果方程等式右边不能除以最小公约数,说明该方程没有解。
{
cout<<"Impossible"<<endl;
}
else
{
xx=xx*((x-y)/d);//求出的xx,yy是方程等于最小公约数时的解,这时要将解扩大为(x-y)*d倍。
long long r=L/d;
xx=(xx%r+r)%r;//此处求解的最小值
cout<<xx<<endl;
}
system("pause");
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
POJ 1061:青蛙的约会的更多相关文章
- poj 1061 青蛙的约会 拓展欧几里得模板
// poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...
- ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德
POJ 1061 青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%lld & %llu Descr ...
- POJ.1061 青蛙的约会 (拓展欧几里得)
POJ.1061 青蛙的约会 (拓展欧几里得) 题意分析 我们设两只小青蛙每只都跳了X次,由于他们相遇,可以得出他们同余,则有: 代码总览 #include <iostream> #inc ...
- poj 1061 青蛙的约会 (扩展欧几里得模板)
青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submit Status ...
- POJ 1061青蛙的约会(拓展欧几里德算法)
题目链接: 传送门 青蛙的约会 Time Limit: 1000MS Memory Limit: 65536K Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见 ...
- POJ 1061 青蛙的约会
青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 82859 A ...
- poj 1061青蛙的约会
青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 90083 Accepted: 16257 Descripti ...
- POJ 1061 青蛙的约会 扩展欧几里德--解不定方程
青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 81606 Accepted: 14116 Descripti ...
- POJ 1061 青蛙的约会(拓展欧几里得求同余方程,解ax+by=c)
青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 122871 Accepted: 26147 Descript ...
- poj 1061 青蛙的约会 扩展欧几里德
青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Description 两 只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们 ...
随机推荐
- c#能同时继承接口和类吗
c#能同时继承接口和类吗?( 要你命3000条12级分类:C#/.NET语言被浏览449次2013.09.10 满意答案 mroyal450 采纳率:54%12级 2013.09.11 C# 类, ...
- axios发送post请求[body-parser]--['Content-type': 'application/x-www-form-urlencoded']
const express = require('express') const axios = require('axios') const bodyParser = require('body-p ...
- js图片瀑布流效果
要实现图片瀑布流效果,首先得准备几张图片. html的部分比较简单就是将图片加载到浏览器就可以了 代码如下(注意放的图片多一点要不然之后无法滑动鼠标就无法达到瀑布流效果): <!DOCTYPE ...
- unity优化-CPU(网上整理)
CPU方面性能考虑:引擎和代码渲染模块.动画模块.物理模块.ui模块.粒子模块.加载模块.GC模块最重要的是渲染模块.UI模块和加载模块1.渲染模块主要是:场景.物体和特效的渲染a.降低Draw ca ...
- java并发(二):初探syncronized
参考博客 Java多线程系列--"基础篇"04之 synchronized关键字 synchronized基本规则 第一条 当线程访问A对象的synchronized方法和同步块的 ...
- sentinel控制台
下载sentinel源码包:https://github.com/alibaba/Sentinel/tree/master,根据自己需要下载不同版本的分支,博主下载得是1.6 下载后解压,然后进入se ...
- vue 组件 - 函数统一调用(自定义钩子)
vue 组件继承方法 var childComponent = Vue.extend( { extends: baseComp, // 继承基础组件方法 template:template, wait ...
- Hadoop入门概念
Hadoop作者:Dong Cutting. 受Google三篇论文的启发. 版本: Apache:官方版本 Cloudera:官方版本的封装,优化,打很多patch,商业版本 HortonWorks ...
- php 实现店铺装修5
/** * @title 选中蜂店装修模板样式 * @param plate_id 是 int 商品(平台或特色)装修样式ID * @param type_id 是 int 要装修商品的类型(1-平台 ...
- L/SQL Developer 和 instantclient客户端安装配置
PL/SQL Developer 和 instantclient客户端安装配置(图文) 一: PL/SQL Developer 安装 下载安装文件安装,我这里的版本号是PLSQL7.1.4.1391, ...