【反转开灯问题】Face The Right Way
题目
Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, like good cows. Some of them are facing backward, though, and he needs them all to face forward to make his life perfect.
Fortunately, FJ recently bought an automatic cow turning machine. Since he purchased the discount model, it must be irrevocably preset to turn K (1 ≤ K ≤ N) cows at once, and it can only turn cows that are all standing next to each other in line. Each time the machine is used, it reverses the facing direction of a contiguous group of K cows in the line (one cannot use it on fewer than K cows, e.g., at the either end of the line of cows). Each cow remains in the same location as before, but ends up facing the opposite direction. A cow that starts out facing forward will be turned backward by the machine and vice-versa.
Because FJ must pick a single, never-changing value of K, please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward. Also determine M, the minimum number of machine operations required to get all the cows facing forward using that value of K.
Input
Line 1: A single integer: N
Lines 2..N+1: Line i+1 contains a single character, F or B, indicating whether cow i is facing forward or backward.
Output
Line 1: Two space-separated integers: K and M Sample Input
7
B
B
F
B
F
B
B
Sample Output
3 3
Hint
For K = 3, the machine must be operated three times: turn cows (1,2,3), (3,4,5), and finally (5,6,7)
大致题意
共有n头牛,每个牛有自己的方向,B是背对,F是正向。你可以选择连续的K头牛转向,如何使用一个K使得操作数最少,K尽量小。
思路
从开头开始搜索,如果为B的话就要改变i到i+k-1的地方。一直到n-k+1。然后判断n-k+2到n跟题意是否一致。(PS:不要真的去修改,只是模拟)
然后sum来记录前k-1个修改几次再决定是不是真的要修改(利用尺取法)。
(PS:尺取法(我在看其他题解时看到的,了解一下):顾名思义,像尺子一样取一段,借用挑战书上面的话说,尺取法通常是对数组保存一对下标,即所选取的区间的左右端点,然后根据实际情况不断地推进区间左右端点以得出答案。尺取法比直接暴力枚举区间效率高很多,尤其是数据量大的时候,所以说尺取法是一种高效的枚举区间的方法,是一种技巧,一般用于求取有一定限制的区间个数或最短的区间等等。当然任何技巧都存在其不足的地方,有些情况下尺取法不可行,无法得出正确答案,所以要先判断是否可以使用尺取法再进行计算。)
下面看一下代码(理解理解)
AC代码:
#include<bits/stdc++.h>
using namespace std;
int a[],n,flag[];
int solve(int k){
int i;
memset(flag,,sizeof(flag));//flag[i]表示区间[i,i+k-1] 是否需要翻转
int sum=,cnt=;//前k-1个转变的次数
for(i=;i<=n-k+;i++){//sum记录走到当前i,其前面k-1个翻转了多少次
if(i-k>=){
sum-=flag[i-k];
}
if(a[i]==&&sum%==){//如果是B 且前面翻转了偶数次 仍旧需要翻转
flag[i]=;
sum+=flag[i];
cnt++;
}
else if(a[i]==&&sum%==){//如果是F 且前面翻转了奇数次
flag[i]=;
sum+=flag[i];
cnt++;
} } for(i;i<=n;i++)
{
if(i-k>=)
{
sum-=flag[i-k];
}
if(sum%==&&a[i]==) return -;
else if(sum%==&&a[i]==) return -;
}
return cnt; }
int main()
{
int i,k,mn;
char s[];
while(scanf("%d",&n)!=EOF)
{
mn=;
for(i=;i<=n;i++)
{
scanf("%s",s);
if(s[]=='B') a[i]=;
else if(s[]=='F') a[i]=; }
k=;
for(i=;i<=n;i++)
{
int mid=solve(i);
//printf("k=%d,cnt=%d\n",i,mid);
if(mid==-) continue;
if(mn>mid) {mn=mid;k=i;}
}
printf("%d %d\n",k,mn);
}
return ;
}
【反转开灯问题】Face The Right Way的更多相关文章
- c语言实现开灯问题
开灯问题: 有n盏灯,编号为1~n,第1个人把所有灯打开,第2个人按下所有编号为2 的倍数的开关(这些灯将被关掉),第3 个人按下所有编号为3的倍数的开关(其中关掉的灯将被打开,开着的灯将被关闭),依 ...
- Jquery开灯关灯效果
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 9509 开灯(dfs)
9509 开灯 时间限制:1000MS 内存限制:65535K提交次数:0 通过次数:0 题型: 编程题 语言: G++;GCC Description 有16的开关分别控制16盏灯,开关排列成 ...
- NYOJ 题目77 开灯问题(简单模拟)
开灯问题 时间限制:3000 ms | 内存限制:65535 KB 难度:1 描述 有n盏灯,编号为1~n,第1个人把所有灯打开,第2个人按下所有编号为2 ...
- 洛谷 P1876 开灯(思维,枚举,规律题)
P1876 开灯 题目背景 该题的题目是不是感到很眼熟呢? 事实上,如果你懂的方法,该题的代码简直不能再短. 但是如果你不懂得呢?那...(自己去想) 题目描述 首先所有的灯都是关的(注意是关!),编 ...
- 【Luogu1876】开灯(数论)
[Luogu1876]开灯(数论) 题面 题目描述 首先所有的灯都是关的(注意是关!),编号为1的人走过来,把是一的倍数的灯全部打开,编号为二的的把是二的倍数的灯全部关上,编号为3的人又把是三的倍数的 ...
- POJ 1218 THE DRUNK JAILER(类开灯问题,完全平方数)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2188 题目大意:n为5-100之间的一个数,代表有多少间牢房,刚开始所有房间打开,第一轮2的倍数的房间 ...
- 30个Python物联网小实验3:使用按钮开灯关灯
使用按钮开灯关灯 接线图非常简单,LED接GPIO17号口,按钮接GPIO2号口,负极接GND地线. 代码也非常简单: from gpiozero import LED, Button from si ...
- Java项目案例之---开灯(面向对象复习)
开灯(面向对象复习) 设计一个台灯类(Lamp)其中台灯有灯泡类(Buble)这个属性,还有开灯(on)这个方法 设计一个灯泡类(Buble),灯泡类有发亮的方法 其中有红灯泡类(RedBuble)和 ...
随机推荐
- 【Linux】yum库的配置
链接–>CentOS7之yum仓库配置
- Java实现 LeetCode 357 计算各个位数不同的数字个数
357. 计算各个位数不同的数字个数 给定一个非负整数 n,计算各位数字都不同的数字 x 的个数,其中 0 ≤ x < 10n . 示例: 输入: 2 输出: 91 解释: 答案应为除去 11, ...
- Java实现旅行商问题
1 问题描述 何为旅行商问题?按照非专业的说法,这个问题要求找出一条n个给定的城市间的最短路径,使我们在回到触发的城市之前,对每个城市都只访问一次.这样该问题就可以表述为求一个图的最短哈密顿回路的问题 ...
- java实现第四届蓝桥杯颠倒的价牌
颠倒的价牌 题目描述 小李的店里专卖其它店中下架的样品电视机,可称为:样品电视专卖店. 其标价都是4位数字(即千元不等). 小李为了标价清晰.方便,使用了预制的类似数码管的标价签,只要用颜色笔涂数字就 ...
- PAT D进制的A+B
输入两个非负 10 进制整数 A 和 B ( <=230-1 ) ,输出 A+B 的 D (1<D<=10) 进制数. 输入格式: 输入在一行中依次给出 3 个整数 A.B 和 D. ...
- 点击 button 自动刷新页面
问题:为什么点击 button 会刷新页面 ? 原因:你代码的写法可能如下图,把 <button> 按钮 写在 <form> </form> 标签里边啦. < ...
- 别在重复造轮子了,几个值得应用到项目中的 Java 开源库送给你
我是风筝,公众号「古时的风筝」.文章会收录在 JavaNewBee 中,更有 Java 后端知识图谱,从小白到大牛要走的路都在里面.公众号回复『666』获取高清大图. 风筝我作为一个野路子开发者,直到 ...
- MongoDB知识点总结
一:MongoDB 概述 一.NoSQL 简介 1. 概念:NoSQL(Not Only SQL的缩写),指的是非关系型数据库,是对不同于传统的关系型数据库的数据库管理系统的统称.用于超大规模数 ...
- GPIO功能框图
(1)保护二极管 引脚内部加上这两个保护二级管可以防止引脚外部过高或过低的电压输入, 当引脚电压高于 VDD_FT 或 VDD 时,上方的二极管导通吸收这个高电压,当引脚 电压低于 VSS 时,下方的 ...
- 轻量级进度条 – Nprogress.js
进度条库是前端中常见的库之一,bootstrap中提供了多种进度条样式.NProgress.js和nanobar.js是两款轻量级的进度条组件,使用简便. 官网: NProgress.js:http: ...