下面四种记号是为了建立函数间的相对级别。

CLRS上的一张图很直观:

大O记号

定义:如果存在正常数\(c\)和\(n_0\),使得当\(N\ge n_o\)时\(T(N)\le cf(N)\),记\(T(N)=O(f(N))\)。

举个栗子:

当\(N < 1000\)时,\(1000N\gt N^2\),但\(N^2\)增长率更大,所以最终\(N^2\)会更大,即\(O(N^2)=1000N\)。

也就是说,总会存在某个点\(n_0\),从这个点以后\(cf(N)\)至少和\(T(N)\)一样大,忽略常数因子,即\(T(N)\)的增长率小于等于\(f(N)\)的增长率。

那么为什么这个常数因子\(c\)可以忽略呢?

当\(N\ge n_o\)时,\(T(N)\le cf(N)\),也就是\(\frac{T(N)}{f(N)}\le c\)。此时如果\(T(N)\)的增长率大于\(f(N)\)的增长率,那么\(\frac{T(N)}{f(N)}\)不可能小于某个常数,也就是\(c\)不存在,与我们的前提条件矛盾,所以说忽略掉常数因子后,\(T(N)\)的增长率仍然小于等于\(f(N)\)的增长率。

那么既然\(T(N)\)是以不快于\(f(N)\)的速度增长,也就可以说\(f(N)\)是\(T(N)\)的一个上界(upper bound),即最坏情况

\(\Omega\)记号

定义:如果存在正常数\(c\)和\(n_0\),使得当\(N\ge n_o\)时\(T(N)\ge cg(n)\),记\(T(N)=\Omega(g(n))\)。

与上述大O的分析类似,可知:

\(T(N)\)的增长率大于等于\(g(N)\)的增长率,\(g(N)\)是\(T(N)\)的一个下界(lower bound),即最好情况

\(\Theta\)记号

定义:当且仅当\(T(N)=\Omega(h(n))\)、\(T(N)=O(h(n))\)时,

\(T(N)=\Theta(f(n))\)。

那么这个就是说\(T(N)\)的增长率等于\(h(N)\)的增长率,即最坏情况和最好情况相同

小o记号

定义:若\(T(N)=O(p(n))\)且\(T(N)\neq\Theta(p(n))\)时,

\(T(N)=o(f(n))\)。

与大O不同,小o表示\(T(N)\)的增长率小于\(p(N)\)的增长率,不包括等于。

Notations的更多相关文章

  1. 深入理解DOM节点类型第三篇——注释节点和文档类型节点

    × 目录 [1]注释节点 [2]文档类型 前面的话 把注释节点和文档类型节点放在一起是因为IE8-浏览器的一个bug.IE8-浏览器将标签名为"!"的元素视作注释节点,所以文档声明 ...

  2. Excel 转Latex 及tex表格的处理 总结

    Excel 转LaTex表格 与TeX表格的处理 总结   工具使用:一个Latex表格输入神器--Excel2Tex插件的安装过程. 首先下载插件:http://www.ctan.org/tex-a ...

  3. (MTT)连续能量函数最小化方法

    (MTT)连续能量函数最小化方法 Multitarget tracking Multi-object tracking 连续能量函数 读"A.Milan,S. Roth, K. Schind ...

  4. Pegasos: Primal Estimated sub-GrAdient Solver for SVM

    Abstract We describe and analyze a simple and effective iterative algorithm for solving the optimiza ...

  5. [转载]VIM 教程:Learn Vim Progressively

    文章来源:http://yannesposito.com/Scratch/en/blog/Learn-Vim-Progressively/   Learn Vim Progressively   TL ...

  6. All About Python

    Part one: Learn the Basics Hello, World! print "Hello,World!" Variables and Types Python i ...

  7. softmax分类器+cross entropy损失函数的求导

    softmax是logisitic regression在多酚类问题上的推广,\(W=[w_1,w_2,...,w_c]\)为各个类的权重因子,\(b\)为各类的门槛值.不要想象成超平面,否则很难理解 ...

  8. Groovy 模版引擎

    1. Introduction Groovy supports multiple ways to generate text dynamically including GStrings, print ...

  9. Groovy 处理 XML

    1. Parsing XML 1.1. XmlParser and XmlSlurper The most commonly used approach for parsing XML with Gr ...

随机推荐

  1. Java对字母大小写转换

    Java对字母大小写转换 1.小写——大写String aa = "abc".toUpperCase(); 2.大写——小写 String bb = "ABC" ...

  2. readthedocs网托管持多语言文档

    希望在readthedocs上创建支持多语言的文档,效果类似: 通过语言选项,可以切到到不同的语言版本:实现这个目标包含两个主要步骤: 在本地对文档进行翻译 在readthedocs.org上配置翻译 ...

  3. Linux ssh登录出错

    今天登录远程主机的时候,出现了以下错误: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @    WARNING: REMOT ...

  4. 推荐一款超实用的GitHub可视化代码树插件:Octotree

    前言 大家在GitHub查看代码的时候,是不是会经常跳转搜索代码!过一段时间就不知道自己跑到哪里了!有了这款工具,妈妈再也不用担心我找不到代码位置了! 直接上效果图 插件名称 : octotree 作 ...

  5. windows上jmeter目录结构功能

    1.bin :存储了jmeter的可执行程序,如启动 2.lib:存储了jmeter的整合的功能(如.jar文件程序) 3.启动jmeter:双击bin\apachejmeter.jar jmeter ...

  6. python-从酷狗下载爬取自己想要的音乐-可以直接拿来体验哟

    因为最近发现咪咕音乐版权好多,当时我就在想是不是可以爬取下来,然后花了一些时间,发现有加密,虽然找到了接口,但是只能手动下载VIP歌曲,对于我们学IT的人来说,这是不能忍的,于是就懒得去解密抓取了,但 ...

  7. Nikto使用方法

    Introduction Nikto是一款开源的(GPL)网站服务器扫描器,使用Perl基于LibWhisker开发.它可以对网站服务器进行全面的多种扫描,包括6400多个潜在危险的文件/CGI,检查 ...

  8. 第十一节:configParse模块

    作用:配置文件解析模块,用来增删改查配置文件内容,不区分大小写 配置文件案例: tets.ini [模块] key=value import configparser config = configp ...

  9. ASE team work proposal

    Hi,我们是Azure Wrapper,欢迎来到我们的blog~我们将在这里记录下ASE课程的滴滴点点,美妙的旅程就要开始啦! 以下是每位队员提交的关于ASE 团队项目的提议: 朱玉影: 随着信息时代 ...

  10. Django系列操作

    每次用到都去百度找....找的还不行~~得自己改~~耗时耗力虽然不难~~~直接贴代码记录下方便自己用~~~~ Django之分页 定义成一个块,直接引用到对应的位置即可... <div clas ...