Notations
下面四种记号是为了建立函数间的相对级别。
CLRS上的一张图很直观:
大O记号
定义:如果存在正常数\(c\)和\(n_0\),使得当\(N\ge n_o\)时\(T(N)\le cf(N)\),记\(T(N)=O(f(N))\)。
举个栗子:
当\(N < 1000\)时,\(1000N\gt N^2\),但\(N^2\)增长率更大,所以最终\(N^2\)会更大,即\(O(N^2)=1000N\)。
也就是说,总会存在某个点\(n_0\),从这个点以后\(cf(N)\)至少和\(T(N)\)一样大,忽略常数因子,即\(T(N)\)的增长率小于等于\(f(N)\)的增长率。
那么为什么这个常数因子\(c\)可以忽略呢?
当\(N\ge n_o\)时,\(T(N)\le cf(N)\),也就是\(\frac{T(N)}{f(N)}\le c\)。此时如果\(T(N)\)的增长率大于\(f(N)\)的增长率,那么\(\frac{T(N)}{f(N)}\)不可能小于某个常数,也就是\(c\)不存在,与我们的前提条件矛盾,所以说忽略掉常数因子后,\(T(N)\)的增长率仍然小于等于\(f(N)\)的增长率。
那么既然\(T(N)\)是以不快于\(f(N)\)的速度增长,也就可以说\(f(N)\)是\(T(N)\)的一个上界(upper bound),即最坏情况。
\(\Omega\)记号
定义:如果存在正常数\(c\)和\(n_0\),使得当\(N\ge n_o\)时\(T(N)\ge cg(n)\),记\(T(N)=\Omega(g(n))\)。
与上述大O的分析类似,可知:
\(T(N)\)的增长率大于等于\(g(N)\)的增长率,\(g(N)\)是\(T(N)\)的一个下界(lower bound),即最好情况。
\(\Theta\)记号
定义:当且仅当\(T(N)=\Omega(h(n))\)、\(T(N)=O(h(n))\)时,
\(T(N)=\Theta(f(n))\)。
那么这个就是说\(T(N)\)的增长率等于\(h(N)\)的增长率,即最坏情况和最好情况相同。
小o记号
定义:若\(T(N)=O(p(n))\)且\(T(N)\neq\Theta(p(n))\)时,
\(T(N)=o(f(n))\)。
与大O不同,小o表示\(T(N)\)的增长率小于\(p(N)\)的增长率,不包括等于。
Notations的更多相关文章
- 深入理解DOM节点类型第三篇——注释节点和文档类型节点
× 目录 [1]注释节点 [2]文档类型 前面的话 把注释节点和文档类型节点放在一起是因为IE8-浏览器的一个bug.IE8-浏览器将标签名为"!"的元素视作注释节点,所以文档声明 ...
- Excel 转Latex 及tex表格的处理 总结
Excel 转LaTex表格 与TeX表格的处理 总结 工具使用:一个Latex表格输入神器--Excel2Tex插件的安装过程. 首先下载插件:http://www.ctan.org/tex-a ...
- (MTT)连续能量函数最小化方法
(MTT)连续能量函数最小化方法 Multitarget tracking Multi-object tracking 连续能量函数 读"A.Milan,S. Roth, K. Schind ...
- Pegasos: Primal Estimated sub-GrAdient Solver for SVM
Abstract We describe and analyze a simple and effective iterative algorithm for solving the optimiza ...
- [转载]VIM 教程:Learn Vim Progressively
文章来源:http://yannesposito.com/Scratch/en/blog/Learn-Vim-Progressively/ Learn Vim Progressively TL ...
- All About Python
Part one: Learn the Basics Hello, World! print "Hello,World!" Variables and Types Python i ...
- softmax分类器+cross entropy损失函数的求导
softmax是logisitic regression在多酚类问题上的推广,\(W=[w_1,w_2,...,w_c]\)为各个类的权重因子,\(b\)为各类的门槛值.不要想象成超平面,否则很难理解 ...
- Groovy 模版引擎
1. Introduction Groovy supports multiple ways to generate text dynamically including GStrings, print ...
- Groovy 处理 XML
1. Parsing XML 1.1. XmlParser and XmlSlurper The most commonly used approach for parsing XML with Gr ...
随机推荐
- Java对字母大小写转换
Java对字母大小写转换 1.小写——大写String aa = "abc".toUpperCase(); 2.大写——小写 String bb = "ABC" ...
- readthedocs网托管持多语言文档
希望在readthedocs上创建支持多语言的文档,效果类似: 通过语言选项,可以切到到不同的语言版本:实现这个目标包含两个主要步骤: 在本地对文档进行翻译 在readthedocs.org上配置翻译 ...
- Linux ssh登录出错
今天登录远程主机的时候,出现了以下错误: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ WARNING: REMOT ...
- 推荐一款超实用的GitHub可视化代码树插件:Octotree
前言 大家在GitHub查看代码的时候,是不是会经常跳转搜索代码!过一段时间就不知道自己跑到哪里了!有了这款工具,妈妈再也不用担心我找不到代码位置了! 直接上效果图 插件名称 : octotree 作 ...
- windows上jmeter目录结构功能
1.bin :存储了jmeter的可执行程序,如启动 2.lib:存储了jmeter的整合的功能(如.jar文件程序) 3.启动jmeter:双击bin\apachejmeter.jar jmeter ...
- python-从酷狗下载爬取自己想要的音乐-可以直接拿来体验哟
因为最近发现咪咕音乐版权好多,当时我就在想是不是可以爬取下来,然后花了一些时间,发现有加密,虽然找到了接口,但是只能手动下载VIP歌曲,对于我们学IT的人来说,这是不能忍的,于是就懒得去解密抓取了,但 ...
- Nikto使用方法
Introduction Nikto是一款开源的(GPL)网站服务器扫描器,使用Perl基于LibWhisker开发.它可以对网站服务器进行全面的多种扫描,包括6400多个潜在危险的文件/CGI,检查 ...
- 第十一节:configParse模块
作用:配置文件解析模块,用来增删改查配置文件内容,不区分大小写 配置文件案例: tets.ini [模块] key=value import configparser config = configp ...
- ASE team work proposal
Hi,我们是Azure Wrapper,欢迎来到我们的blog~我们将在这里记录下ASE课程的滴滴点点,美妙的旅程就要开始啦! 以下是每位队员提交的关于ASE 团队项目的提议: 朱玉影: 随着信息时代 ...
- Django系列操作
每次用到都去百度找....找的还不行~~得自己改~~耗时耗力虽然不难~~~直接贴代码记录下方便自己用~~~~ Django之分页 定义成一个块,直接引用到对应的位置即可... <div clas ...