CF1316E Team Building
CF1316E 【Team Building】
状压dp,感觉比D简单
\(f[i][s]\),表示考虑前\(i\)个人,状态为\(s\)(\(s\)的第\(j-1\)个二进制位表示队员的第\(j\)个位置有没有人)的最大价值
考虑如何转移
如果不让第\(i\)个人当队员
- 如果当前已选为观众的人不足\(k\)个,则一定让它当观众,那么\(f[i][s]\)由\(f[i-1][s]+a_i\)转移来,不过这样做的前提是要先把这\(i\)个人按照他们当观众时的价值排序,从而如果当前观众不到\(k\)个但不选第\(i\)个,就一定会在后面选一个\(j(j>i)\)当观众,\(a_j<a_i\),就没有选第\(i\)个优了
- 如果已经选了\(k\)个,不能再选直接\(f[i][s]=f[i-1][s]\)
已经选了几个要通过\(s\)确定,也就是\(i-1-s\text{在二进制中1的个数}\) 个人已被选位观众
让第\(i\)个人当队员
枚举把\(i\)放在哪一位,如果要将他放在第\(j\)位,则需满足\(s\)的第\(j-1\)个二进制位为1(也就是当前的状态这一个位置有人),那么\(f[i][s]\)可以由\(f[i-1][s \oplus (j-1)]+s_{i,j}\)转移而来
这里异或的意义就是把\(s\)的第\(j-1\)个二进制位从1变0,被转移的状态肯定是第\(j\)个位置没人
那么就可以写出代码了,其实整个思考的最重要部分就在于把\(n\)个人排序,来实现 能被选去当观众就一定选,就能达到最优 的效果,复杂度\(O(np2^p)\)
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#define reg register
#define EN std::puts("")
#define LL long long
inline int read(){
int x=0,y=1;
char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
int n,p,k;
struct data{
int v,id;
LL s[10];
}a[100006];
LL f[100006][130];
inline int cmp(data aa,data aaa){return aa.v>aaa.v;}
int main(){
n=read();p=read();k=read();
for(reg int i=1;i<=n;i++) a[i].v=read(),a[i].id=i;;
for(reg int i=1;i<=n;i++)
for(reg int j=1;j<=p;j++) a[i].s[j]=read();
reg int lim=1<<p;
std::sort(a+1,a+1+n,cmp);
std::memset(f,-1,sizeof f);
f[0][0]=0;
for(reg int i=1;i<=n;i++){
for(reg int s=0;s<lim;s++){
int cnt=0;
for(reg int j=0;j<p;j++)
if(s&(1<<j)) cnt++;
int tmp=i-1-cnt;
if(tmp<k){
if(f[i-1][s]!=-1) f[i][s]=f[i-1][s]+a[i].v;;
}
else f[i][s]=f[i-1][s];
for(reg int j=1;j<=p;j++){
if((s&(1<<(j-1)))&&f[i-1][s^(1<<(j-1))]!=-1)
f[i][s]=std::max(f[i][s],f[i-1][s^(1<<(j-1))]+a[i].s[j]);
}
}
}
std::printf("%lld",f[n][lim-1]);
return 0;
}
CF1316E Team Building的更多相关文章
- BZOJ 4742: [Usaco2016 Dec]Team Building
4742: [Usaco2016 Dec]Team Building Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 21 Solved: 16[Su ...
- Spoj-BIPCSMR16 Team Building
To make competitive programmers of BUBT, authority decide to take regular programming contest. To ma ...
- BZOJ4742 : [Usaco2016 Dec]Team Building
如果我们将两个人拥有的牛混在一起,并按照战斗力从小到大排序,同时把第一个人选的牛看成$)$,第二个人选的牛看成$($的话,那么我们会发现一个合法的方案对应了一个长度为$2k$的括号序列. 于是DP即可 ...
- 1742. Team building(dfs)
1742 最小的是找联通块数 最大的找环 一个环算一个 其它的数各算一个 #include <iostream> #include<cstdio> #include<cs ...
- [USACO 2016Dec] Team Building
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=4742 [算法] 动态规划 用Fi,j,k表示约翰的前i头牛和保罗的前j头牛匹配 , ...
- 简单状压dp的思考 - 最大独立集问题和最大团问题 - 壹
本文参考:CPH ,USACO Guide (大佬请越过,这是初学笔记,不要吐槽内容) 前置知识:位运算基础,动态规划基础 介绍 状态是元素的子集的动态规划算法,可以用位运算来高效的优化. 那么第一道 ...
- [Exchange 2013]创建约会和会议
简介 会议和约会之间的重要区别是,会议有与会者,并且没有约会.约会和会议可以是单实例或属于重复序列,但与会者. 房间或资源中不包括约会,因为它们不需要发送一条消息.在内部,Exchange 使用相同的 ...
- USER STORIES AND USE CASES - DON’T USE BOTH
We’re in Orlando for a working session as part of the Core Team building BABOK V3 and over dinner th ...
- 基于AWS的云服务架构最佳实践
ZZ from: http://blog.csdn.net/wireless_com/article/details/43305701 近年来,对于打造高度可扩展的应用程序,软件架构师们挖掘了若干相关 ...
随机推荐
- 09-soap接口类型进行测试webservice协议
webxml.com.cn/zh_cn/weather_icon.aspx webxml.com.cn/webservices/weatherWS.asmx? 以上2个url可用来免费使用(经典场景) ...
- sigmod函数求导
sigmod函数: \[f(z)=\frac{1}{1+e^{-z}} \] 求导: \[\frac{\partial f(z)}{\partial z}=\frac{-1*-1*e^{-z}}{(1 ...
- 【python实现卷积神经网络】上采样层upSampling2D实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
- AJ学IOS(44)之网易彩票自定义图片在右边的Button_弹出view_ios6,7简单适配
AJ分享,必须精品 效果: 注意图里面了吗,其实那个效果做起来真的很简单,在iOS中苹果给我们封装的很好,关键是那个按钮 系统的按钮的图片是在左边的,这里我们需要把他调整到右边,然后呢需要我们自己做一 ...
- C#——继承
在某基类中声明 virtual 并在一个或多个派生类中被重新定义的成员函数称为虚函数. 虚函数的作用就是实现多态性(Polymorphism),多态性是将接口与实现进行分离. C#作为完全面向对象语言 ...
- 今天整理了几个在使用python进行数据分析的常用小技巧、命令。
提高Python数据分析速度的八个小技巧 01 使用Pandas Profiling预览数据 这个神器我们在之前的文章中就详细讲过,使用Pandas Profiling可以在进行数据分析之前对数据进行 ...
- Roles on a Machine Learning Project (机器学习项目中的角色)
原文 :https://medium.com/machine-learning-in-practice/roles-on-a-machine-learning-project-216903a6dc12 ...
- cool-yogurt小组采访感想
“对于这个小组项目的选题,其实最初的那个版本我还是被“感动”到的,因为我自己以前确实有这样的类似体验和需求,以前非常喜欢一个球星,因此想知道关于他所有的事情,想知道他每一场比赛的数据,新闻有哪些报道, ...
- 吊打面试官系列:Redis 性能优化的 13 条军规大全
1.缩短键值对的存储长度 键值对的长度是和性能成反比的,比如我们来做一组写入数据的性能测试,执行结果如下: 从以上数据可以看出,在 key 不变的情况下,value 值越大操作效率越慢,因为 Redi ...
- IN612 IN612L蓝牙5.0 SoC芯片替换NRF52832/NRF52840
IN612L是美国公司INPLAY的SOC产品系列之一,具有多模协同2.4G无线协议栈,支持2.4G私有协议栈以及蓝牙5.0全协议栈的SOC芯片.如2mbps高数据速率模式,125kbps/500kb ...