You may have already known that a standard ICPC team consists of exactly three members. The perfect team however has more restrictions. A student can have some specialization: coder or mathematician. She/he can have no specialization, but can't have both at the same time.

So the team is considered perfect if it includes at least one coder, at least one mathematician and it consists of exactly three members.

You are a coach at a very large university and you know that cc of your students are coders, mm are mathematicians and xx have no specialization.

What is the maximum number of full perfect teams you can distribute them into?

Note that some students can be left without a team and each student can be a part of no more than one team.

You are also asked to answer qq independent queries.

Input

The first line contains a single integer qq (1≤q≤1041≤q≤104) — the number of queries.

Each of the next qq lines contains three integers cc, mm and xx (0≤c,m,x≤1080≤c,m,x≤108) — the number of coders, mathematicians and students without any specialization in the university, respectively.

Note that the no student is both coder and mathematician at the same time.

Output

Print qq integers — the ii-th of them should be the answer to the ii query in the order they are given in the input. The answer is the maximum number of full perfect teams you can distribute your students into.

Example

Input
6
1 1 1
3 6 0
0 0 0
0 1 1
10 1 10
4 4 1
Output
1
3
0
0
1
3

Note

In the first example here are how teams are formed:

  1. the only team of 1 coder, 1 mathematician and 1 without specialization;
  2. all three teams consist of 1 coder and 2 mathematicians;
  3. no teams can be formed;
  4. no teams can be formed;
  5. one team consists of 1 coder, 1 mathematician and 1 without specialization, the rest aren't able to form any team;
  6. one team consists of 1 coder, 1 mathematician and 1 without specialization, one consists of 2 coders and 1 mathematician and one consists of 1 coder and 2 mathematicians.

题接:题目描述的意思就是 x个a y个b, z个c ,在a和b中至少选择一个,最终凑成3个数,c有选不选都可以,问,,最多能有多少种选择?

FS: 马虎,,,下次做这种多中过程的题目时,可以把每个过程的做法以及思路写下来。

思路: 因为z可有可无,所以我们首先要考虑z,如果z比x或者y任何一个数大的话,那就直接输出x和y的最小值。否则优先使用z即答案ans+=z,然后x和y的个数都减去个z,在考虑x和y较大的那个,求差y1,如果y>x和y最小值;

那么输出abs+=x和y的最小值,否则 用掉y  这时x=y=x-y1,,答案为ans+=(x+x)/3'

#include<bits/stdc++.h>
using namespace std;
int main(){
int t;
cin>>t;
while(t--){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
int x1=min(x,y);
int x2=max(x,y);
if(x1<=z) printf("%d\n",x1);
else {
int ans=;
ans=z;
x1=x1-z;
x2=x2-z;
int y;
y=x2-x1;
if(y>=x1) cout<<x1+ans<<endl;
else {
ans+=y;
x1-=y;
cout<<ans+(x1+x1)/<<endl;
}
}
}
return ;
}

codeforces 122C perfect team的更多相关文章

  1. Codeforces 1221C. Perfect Team

    传送门 考虑如何保证限制,首先团队数最大就是 $min(c,m)$ 但是还不够,每个团队还要 $3$ 个人,所以还要和 $(c+m+x)/3$ 再取 $min$ 这样就满足所有限制了 #include ...

  2. Educational Codeforces Round 73 (Rated for Div. 2) C. Perfect Team

    链接: https://codeforces.com/contest/1221/problem/C 题意: You may have already known that a standard ICP ...

  3. Codeforces 986D Perfect Encoding FFT 分治 高精度

    原文链接https://www.cnblogs.com/zhouzhendong/p/9161557.html 题目传送门 - Codeforces 986D 题意 给定一个数 $n(n\leq 10 ...

  4. Codeforces 980D Perfect Groups 计数

    原文链接https://www.cnblogs.com/zhouzhendong/p/9074164.html 题目传送门 - Codeforces 980D 题意 $\rm Codeforces$ ...

  5. [CodeForces - 919B] Perfect Number

    题目链接:http://codeforces.com/problemset/problem/919/B AC代码: #include<cstdio> using namespace std ...

  6. Codeforces 948D Perfect Security(字典树)

    题目链接:Perfect Security 题意:给出N个数代表密码,再给出N个数代表key.现在要将key组排序,使key组和密码组的亦或所形成的组字典序最小. 题解:要使密码组里面每个数都找到能使 ...

  7. Codeforces 932 E. Team Work(组合数学)

    http://codeforces.com/contest/932/problem/E 题意:   可以看做 有n种小球,每种小球有无限个,先从中选出x种,再在这x种小球中任选k个小球的方案数 选出的 ...

  8. Codeforces 932.E Team Work

    E. Team Work time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  9. CodeForces - 233A Perfect Permutation

    A. Perfect Permutation time limit per test: 2 seconds memory limit per test: 256 megabytes input: st ...

随机推荐

  1. 题解 CF1304E 【1-Trees and Queries】

    前言 这场比赛,在最后 \(5\) 分钟,我想到了这道题的 \(Idea\),但是,没有打完,比赛就结束了. 正文 题目意思 这道题目的意思就是说,一棵树上每次给 \(x\) 和 \(y\) 节点连 ...

  2. sql-lib闯关61-65

    第六十一关 和六十关基本一样,就是变成了单引号和双括号,这好像是第一次遇见双括号 爆数据库名   ?id=1'))and extractvalue(1, concat(0x5c, (select da ...

  3. Vmware15.5安装与许可教程

    最近Windows总是提醒我1803版本的服务即将过期,劝我升级到最新版.可我在自动安装的过程中却总是安装失败.于是官网下载了更新助手.检测到的问题是升级过程和 Vmware 软件冲突,于是卸载了 V ...

  4. 移动端H5调试

    背景:开发PC页面的时候使用chrome浏览器的开发者工具,可以很容易的捕获到页面的dom元素,并且可以修改样式,方便调试:但是手机上却很麻烦,因为手机上没有办法直接打开开发者工具查看元素.其实可以通 ...

  5. 《Flutter 动画系列一》25种动画组件超全总结

    动画运行的原理 任何程序的动画原理都是一样的,即:视觉暂留,视觉暂留又叫视觉暂停,人眼在观察景物时,光信号传入大脑神经,需经过一段短暂的时间,光的作用结束后,视觉形象并不立即消失,这种残留的视觉称&q ...

  6. Python python 数据类型的相互转换

    # number 之间的相互转换 # int <=> float var1 = 1; print(type(var1)) #<class 'int'> res1 = float ...

  7. mabatis入门五 高级结果映射

    一.创建测试的表和数据 1.创建表 1CREATE TABLE items ( 2 id INT NOT NULL AUTO_INCREMENT, 3 itemsname VARCHAR(32) NO ...

  8. SpringBoot使用RedisTemplate操作Redis时,key值出现 \xac\xed\x00\x05t\x00\tb

    原因分析 原因与RedisTemplate源码中的默认序列化方式有关 defaultSerializer = new JdkSerializationRedisSerializer( classLoa ...

  9. WiX 简介

    最近研究了一下WIX打包,简单总结一下,方便自己以后查阅,也希望能给需要的人一些提示和帮助. WiX 简介 Windows Installer XML (WiX ) 平台是一组工具与规范,使您能够创建 ...

  10. 创建Windows10无人值守(自动应答文件)教程

    一.准备工作 系统要求: Windows10 1809版本 工具下载: 镜像:Windows10,任何一个版本都可以,我使用的是1909版本 ed2k://|file|cn_windows_10_bu ...