codeforces 122C perfect team
You may have already known that a standard ICPC team consists of exactly three members. The perfect team however has more restrictions. A student can have some specialization: coder or mathematician. She/he can have no specialization, but can't have both at the same time.
So the team is considered perfect if it includes at least one coder, at least one mathematician and it consists of exactly three members.
You are a coach at a very large university and you know that cc of your students are coders, mm are mathematicians and xx have no specialization.
What is the maximum number of full perfect teams you can distribute them into?
Note that some students can be left without a team and each student can be a part of no more than one team.
You are also asked to answer qq independent queries.
Input
The first line contains a single integer qq (1≤q≤1041≤q≤104) — the number of queries.
Each of the next qq lines contains three integers cc, mm and xx (0≤c,m,x≤1080≤c,m,x≤108) — the number of coders, mathematicians and students without any specialization in the university, respectively.
Note that the no student is both coder and mathematician at the same time.
Output
Print qq integers — the ii-th of them should be the answer to the ii query in the order they are given in the input. The answer is the maximum number of full perfect teams you can distribute your students into.
Example
6
1 1 1
3 6 0
0 0 0
0 1 1
10 1 10
4 4 1
1
3
0
0
1
3
Note
In the first example here are how teams are formed:
- the only team of 1 coder, 1 mathematician and 1 without specialization;
- all three teams consist of 1 coder and 2 mathematicians;
- no teams can be formed;
- no teams can be formed;
- one team consists of 1 coder, 1 mathematician and 1 without specialization, the rest aren't able to form any team;
- one team consists of 1 coder, 1 mathematician and 1 without specialization, one consists of 2 coders and 1 mathematician and one consists of 1 coder and 2 mathematicians.
题接:题目描述的意思就是 x个a y个b, z个c ,在a和b中至少选择一个,最终凑成3个数,c有选不选都可以,问,,最多能有多少种选择?
FS: 马虎,,,下次做这种多中过程的题目时,可以把每个过程的做法以及思路写下来。
思路: 因为z可有可无,所以我们首先要考虑z,如果z比x或者y任何一个数大的话,那就直接输出x和y的最小值。否则优先使用z即答案ans+=z,然后x和y的个数都减去个z,在考虑x和y较大的那个,求差y1,如果y>x和y最小值;
那么输出abs+=x和y的最小值,否则 用掉y 这时x=y=x-y1,,答案为ans+=(x+x)/3'
#include<bits/stdc++.h>
using namespace std;
int main(){
int t;
cin>>t;
while(t--){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
int x1=min(x,y);
int x2=max(x,y);
if(x1<=z) printf("%d\n",x1);
else {
int ans=;
ans=z;
x1=x1-z;
x2=x2-z;
int y;
y=x2-x1;
if(y>=x1) cout<<x1+ans<<endl;
else {
ans+=y;
x1-=y;
cout<<ans+(x1+x1)/<<endl;
}
}
}
return ;
}
codeforces 122C perfect team的更多相关文章
- Codeforces 1221C. Perfect Team
传送门 考虑如何保证限制,首先团队数最大就是 $min(c,m)$ 但是还不够,每个团队还要 $3$ 个人,所以还要和 $(c+m+x)/3$ 再取 $min$ 这样就满足所有限制了 #include ...
- Educational Codeforces Round 73 (Rated for Div. 2) C. Perfect Team
链接: https://codeforces.com/contest/1221/problem/C 题意: You may have already known that a standard ICP ...
- Codeforces 986D Perfect Encoding FFT 分治 高精度
原文链接https://www.cnblogs.com/zhouzhendong/p/9161557.html 题目传送门 - Codeforces 986D 题意 给定一个数 $n(n\leq 10 ...
- Codeforces 980D Perfect Groups 计数
原文链接https://www.cnblogs.com/zhouzhendong/p/9074164.html 题目传送门 - Codeforces 980D 题意 $\rm Codeforces$ ...
- [CodeForces - 919B] Perfect Number
题目链接:http://codeforces.com/problemset/problem/919/B AC代码: #include<cstdio> using namespace std ...
- Codeforces 948D Perfect Security(字典树)
题目链接:Perfect Security 题意:给出N个数代表密码,再给出N个数代表key.现在要将key组排序,使key组和密码组的亦或所形成的组字典序最小. 题解:要使密码组里面每个数都找到能使 ...
- Codeforces 932 E. Team Work(组合数学)
http://codeforces.com/contest/932/problem/E 题意: 可以看做 有n种小球,每种小球有无限个,先从中选出x种,再在这x种小球中任选k个小球的方案数 选出的 ...
- Codeforces 932.E Team Work
E. Team Work time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...
- CodeForces - 233A Perfect Permutation
A. Perfect Permutation time limit per test: 2 seconds memory limit per test: 256 megabytes input: st ...
随机推荐
- web----HTML(HTML的概念)
##HTML 1.概念:最基础的网页开发语言 *Hyper Text Markup Lanugage 超文本标记语言 *超文本:超文本是用超链接的方法,将各种不同空间的文字信息组织在一起的网状文本. ...
- VIM不正常退出产生的swp文件
VIM不正常退出产生的swp文件 当你非正常关闭vim编辑器时(比如直接关闭终端或者电脑断电),会生成一个.swp文件,这个文件是一个临时交换文件,用来备份缓冲区中的内容. 第一次产生的交换文件名为“ ...
- 【笔记3-31】Python语言基础-元组tuple
创建元组 my_tuple = () my_tuple1 = 1, 2, 3, 4, 5, 6 元组解包 与元组元素数量一致 a,s,d,f,g,h = my_tuple1 a, b, c, *f = ...
- TensorFlow 安装官方教程:Ubuntu 安装,Mac OS X 安装,Windows 安装
从我的使用体验来看 Ubuntu 是最好的, Mac 没有显卡,后期跑大项目比较鸡肋,Windows 安装各种依赖各种坑.Ubuntu 安装 TensorFlow 方便,后面安装 TensorFl ...
- 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(二)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 作者:Geppetto 前面我们介绍了特征选择(Feature S ...
- Spark使用jdbc时的并行度
Spark SQL支持数据源使用JDBC从其他数据库读取数据. 与使用JdbcRDD相比,应优先使用此功能. 这是因为结果以DataFrame的形式返回,并且可以轻松地在Spark SQL中进行处理或 ...
- 怎么获取WebAPI项目中图片在服务端的路径
1.这是我的项目结构. 2.路径格式为:[http://服务器域名/文件夹/文件.扩展名] 测试:假如我要获取到[logo_icon.jpg]这张图.在浏览器的地址栏中输入上面那个格式的路径. 3.可 ...
- [讲解]prim算法<最小生成树>
最小生成树的方法一般比较常用的就是kruskal和prim算法 一个是按边从小到大加,一个是按点从小到大加,两个方法都是比较常用的,都不是很难... kruskal算法在本文里我就不讲了,本文的重点是 ...
- C#中的字符串处理
C#中的字符串处理 是由多个单个字符组成的.字符串的关键字是string,而我们单个字符char型.也就是一个字符串可以分为很多个char的字符.注意 同时,我们在开发项目或者学习时.更多的操作不是数 ...
- netcore webapi参数
1.参数带[FormBody]标签 2.ajax 请求 content-type:application/json 3.post时 需要JSON.stringify 4.GET 时不需要JSON.st ...