算法:LCA,树上差分+(乱搞)

如果有写错的地方请大佬更正

对于100%数据:

u表示起点,v表示终点

对于一条u到v的路径,先讨论LCA!=u&&LCA!=v的情况:

分为u到LCA的路径和LCA到v的路径

对于u到LCA的路径上的点x,当deep[u]-deep[x]=w[x]时,即w[x]+deep[x]=deep[u]时,这条路径对点x有贡献;

观察发现w[x]+deep[x]是定值,所以统计经过x的路径中,deep[u]=w[x]+deep[x]的路径条数。

对于LCA到v的路径上的点x,当deep[u]-2*deep[LCA]+deep[x]=w[x]时,即w[x]-deep[x]=deep[u]-2*deep[lca]时,这条路径对点x有贡献;

观察发现w[x]-deep[x]是定值,所以统计经过x的路径中,deep[u]-2*deep[lca]=w[x]-deep[x]的路径条数;

接下来就是统计路径条数了,用到树上差分

我们统计的起点(终点)一定在点x子树内,所以统计x子树内有多少起点(终点)的值等于所需值

即统计有多少个在点x子树内的起点的deep[u]的值与deep[x]+w[x]相同

有多少终点的deep[u]-2*deep[lca]与w[x]-deep[x]相同

对于一个值,再u、v上加一个表示这个值+1的标记

考虑到x子树内的路径不一定经过x,所以在father[LCA]上加一个标记表示这个值-1

标记用动态数组储存

然后一遍dfs用两个桶分别统计,统计时值统一加上n,因为可能出现负数

记录下dfs到父亲节点时自己(也就是父亲的儿子)所需值的个数,然后统计完子树的值之后再做差计算自己

对于LCA==u||LCA==v的情况归于以上两类计算,特殊处理一下

另外,对于分裂成两条链LCA可能会被统计两遍,最后特殊判断一下,如果被统计了两遍就减去一遍,

复杂度:

LCA O(mlogn)

dfs统计 O(n)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#define N 300009
using namespace std;
int n,m;
vector<int>G[N];
int W[N];
int S[N],T[N],LCA[N]; int father[N],son[N],depth[N];
int heavyson[N],top[N];
int dfs1(int now,int fa){
father[now]=fa;
son[now]=1;
depth[now]=depth[fa]+1;
for(int i=0;i<G[now].size();++i){
if(G[now][i]!=fa){
dfs1(G[now][i],now);
son[now]+=son[G[now][i]];
if(son[G[now][i]]>son[heavyson[now]])heavyson[now]=G[now][i];
}
}
} int dfs2(int now,int first){
top[now]=first;
if(!heavyson[now])return 0;
dfs2(heavyson[now],first);
for(int i=0;i<G[now].size();++i){
if(G[now][i]!=father[now]&&G[now][i]!=heavyson[now])dfs2(G[now][i],G[now][i]);
}
} int swap(int &a,int &b){
int t=a;a=b;b=t;
} int lca(int u,int v){
int tu=top[u],tv=top[v];
while(tu!=tv){
if(depth[tu]<depth[tv]){
swap(tu,tv);swap(u,v);
}
u=father[tu];tu=top[u];
}
if(depth[u]<depth[v])return u;
else return v;
} int cnt[N];
int T1[N+N],T2[N+N];
struct tag{
int v,siz;
};
vector<tag>tag1[N];
vector<tag>tag2[N];
int dfs(int now,int a,int b){
for(int i=0;i<tag1[now].size();++i){
T1[tag1[now][i].v+N]+=tag1[now][i].siz;
}
for(int i=0;i<tag2[now].size();++i){
T2[tag2[now][i].v+N]+=tag2[now][i].siz;
} for(int i=0;i<G[now].size();++i){
int v=G[now][i];
if(v==father[now])continue;
dfs(v,T1[W[v]+depth[v]+N],T2[W[v]-depth[v]+N]);
} cnt[now]+=T1[W[now]+depth[now]+N]+T2[W[now]-depth[now]+N]-a-b;
} int read(){
int r=0,k=1;
char c=getchar();
for(;c<'0'||c>'9';c=getchar())if(c=='-')k=-1;
for(;c>='0'&&c<='9';c=getchar())r=r*10+c-'0';
return r*k;
} int main(){
n=read();m=read();
for(int i=1;i<=n-1;++i){
int x=read(),y=read();
G[x].push_back(y);
G[y].push_back(x);
}
for(int i=1;i<=n;++i)W[i]=read();
for(int i=1;i<=m;++i)S[i]=read(),T[i]=read();
dfs1(1,0),dfs2(1,1);
for(int i=1;i<=m;++i)LCA[i]=lca(S[i],T[i]); for(int i=1;i<=m;++i){
if(LCA[i]==T[i]){
tag1[S[i]].push_back((tag){depth[S[i]],1});
tag1[father[T[i]]].push_back((tag){depth[S[i]],-1});
}else if(LCA[i]==S[i]){
tag2[T[i]].push_back((tag){depth[S[i]]-2*depth[LCA[i]],1});
tag2[father[S[i]]].push_back((tag){depth[S[i]]-2*depth[LCA[i]],-1});
}else{
if(W[LCA[i]]+depth[LCA[i]]==depth[S[i]])--cnt[LCA[i]];
tag1[S[i]].push_back((tag){depth[S[i]],1});
tag1[father[LCA[i]]].push_back((tag){depth[S[i]],-1});
tag2[T[i]].push_back((tag){depth[S[i]]-2*depth[LCA[i]],1});
tag2[father[LCA[i]]].push_back((tag){depth[S[i]]-2*depth[LCA[i]],-1});
}
} dfs(1,0,0); for(int i=1;i<=n;++i)printf("%d ",cnt[i]); return 0;
}

  

NOIP2016天天爱跑步解题思路的更多相关文章

  1. [NOIp2016]天天爱跑步 线段树合并

    [NOIp2016]天天爱跑步 LG传送门 作为一道被毒瘤出题人们玩坏了的NOIp经典题,我们先不看毒瘤的"动态爱跑步"和"天天爱仙人掌",回归一下本来的味道. ...

  2. [Noip2016]天天爱跑步 LCA+DFS

    [Noip2016]天天爱跑步 Description 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.?天天爱跑步?是一个养成类游戏,需要玩家每天按时上线,完成打卡任 ...

  3. 【LG1600】[NOIP2016]天天爱跑步

    [LG1600][NOIP2016]天天爱跑步 题面 洛谷 题解 考虑一条路径\(S\rightarrow T\)是如何给一个观测点\(x\)造成贡献的, 一种是从\(x\)的子树内出来,另外一种是从 ...

  4. BZOJ4719 [Noip2016]天天爱跑步

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  5. NOIP2016 天天爱跑步(线段树/桶)

    题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.天天爱跑步是一个养成类游戏,需要 玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵包含 N个结点 ...

  6. ☆ [NOIp2016] 天天爱跑步 「树上差分」

    题目类型:LCA+思维 传送门:>Here< 题意:给出一棵树,有\(M\)个人在这棵树上跑步.每个人都从自己的起点\(s[i]\)跑到终点\(t[i]\),跑过一条边的时间为1秒.现在每 ...

  7. NOIP2016天天爱跑步 题解报告【lca+树上统计(桶)】

    题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.«天天爱跑步»是一个养成类游戏,需要玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵包含 nn个 ...

  8. noip2016天天爱跑步

    题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.«天天爱跑步»是一个养成类游戏,需要玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵包含 个结点 ...

  9. bzoj 4719: [Noip2016]天天爱跑步

    Description 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.?天天爱跑步?是一个养成类游戏,需要 玩家每天按时上线,完成打卡任务.这个游戏的地图可以看作一一 ...

随机推荐

  1. pytorch中tensor张量数据基础入门

    pytorch张量数据类型入门1.对于pytorch的深度学习框架,其基本的数据类型属于张量数据类型,即Tensor数据类型,对于python里面的int,float,int array,flaot ...

  2. 科学计算库(BLAS,LAPACK,MKL,EIGEN)

    函数库接口标准:BLAS (Basic Linear Algebra Subprograms)和LAPACK (Linear Algebra PACKage) 1979年,Netlib首先用Fortr ...

  3. OSI参考模型对网络排错的指导

    问题 当我们遇到网络故障的时候,比如连不上网.打开浏览器无法正常访问等问题的时候,我们应该怎么排查呢? 我们首先想到的是物理层,因为在OSI参考模型中物理层是在最低端.最基础. 物理层排查 主要查看连 ...

  4. status 后面的P和I是什么单词的缩写

    我不是很肯定,有大概印象:P 为 performed, 已完成I 为 incomplete 未完成

  5. android 桌面透明

      目录(?)[-] public void setWallpaperOffsetSteps float xStep float yStep Parameters public void setWal ...

  6. Python数据分析在互联网寒冬下,数据分析师还吃香吗?

    伴随着移动互联网的飞速发展,越来越多用户被互联网连接在一起,用户所积累下来的数据越来越多,市场对数据方面人才的需求也越来越大,由此也带火了如数据分析.数据挖掘.算法等职业,而作为其中入门门槛相对较低. ...

  7. java 获取当前时间,前一天时间

    java获取当前时间,并按一定格式输出 1.用Calendar获取Date Calendar calendar=Calendar.getInstance(); SimpleDateFormat for ...

  8. java字符集编码乱码问题

    博客分类: web javajspservlet  最近做网页这块时碰到了正文字符乱码问题.别看这小小的一个问题,对我来说却花费了好长一段时间.现在让我慢慢分析它吧(说实话.这些有部分是从网上找的,但 ...

  9. mysql分区介绍

    http://www.cnblogs.com/chenmh/p/5644713.html 介绍 可以针对分区表的每个分区指定各自的存储路径,对于innodb存储引擎的表只能指定数据路径,因为数据和索引 ...

  10. P1072 开学寄语

    P1072 开学寄语 转跳点: