TensorFlow中的L2正则化函数:tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()的用法与异同
tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()都是TensorFlow中的L2正则化函数,tf.contrib.layers.l2_regularizerd()函数在tf 2.x版本中被弃用了。
两者都能用来L2正则化处理,但运算有一点不同。
import tensorflow as tf
sess = InteractiveSession() a = tf.constant([1, 2, 3], dtype=tf.float32)
b = tf.nn.l2_loss(a)
print(b.eval()) # 7.0
# tf.nn.l2_loss 运算是每个数的平方和再除以二
# b = (12+22+33)/2 =7.0
而tf.contrib.layers.l2_regularizerd()的运算是每个数的平方和 开根号 再除以二,即(12+22+33)0.5 /2
我的tf版本没法用l2_regularizerd函数,就没演示代码了。
tf.nn.l2_loss
TensorFlow中的L2正则化函数:tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()的用法与异同的更多相关文章
- tensorflow中添加L2正则化损失
方法有几种,总结一下方便后面使用. 1. tensorflow自动维护一个tf.GraphKeys.WEIGHTS集合,手动在集合里面添加(tf.add_to_collection())想要进行正则化 ...
- 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在
1. tf.nn.moments(x, axes=[0, 1, 2]) # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...
- Kaldi中的L2正则化
steps/nnet3/train_dnn.py --l2-regularize-factor 影响模型参数的l2正则化强度的因子.要进行l2正则化,主要方法是在配置文件中使用'l2-regulari ...
- TensorFlow 辨异 —— tf.add(a, b) 与 a+b(tf.assign 与 =)、tf.nn.bias_add 与 tf.add(转)
1. tf.add(a, b) 与 a+b 在神经网络前向传播的过程中,经常可见如下两种形式的代码: tf.add(tf.matmul(x, w), b) tf.matmul(x, w) + b 简而 ...
- 从有约束条件下的凸优化角度思考神经网络训练过程中的L2正则化
从有约束条件下的凸优化角度思考神经网络训练过程中的L2正则化 神经网络在训练过程中,为应对过拟合问题,可以采用正则化方法(regularization),一种常用的正则化方法是L2正则化. 神经网络中 ...
- TensorFlow 辨异 —— tf.add(a, b) 与 a+b(tf.assign 与 =)、tf.nn.bias_add 与 tf.add
1. tf.add(a, b) 与 a+b 在神经网络前向传播的过程中,经常可见如下两种形式的代码: tf.add(tf.matmul(x, w), b) tf.matmul(x, w) + b 简而 ...
- tensorflow 的 Batch Normalization 实现(tf.nn.moments、tf.nn.batch_normalization)
tensorflow 在实现 Batch Normalization(各个网络层输出的归一化)时,主要用到以下两个 api: tf.nn.moments(x, axes, name=None, kee ...
- 机器学习中L1,L2正则化项
搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不 ...
- tf.nn.conv2d 和 tf.nn.max_pool 中 padding 分别为 'VALID' 和 'SAME' 的直觉上的经验和测试代码
这个地方一开始是迷糊的,写代码做比较分析,总结出直觉上的经验. 某人若想看精准的解释,移步这个网址(http://blog.csdn.net/fireflychh/article/details/73 ...
随机推荐
- Guava LoadingCache不能缓存null值
测试的时候发现项目中的LoadingCache没有刷新,但是明明调用了refresh方法了.后来发现LoadingCache是不支持缓存null值的,如果load回调方法返回null,则在get的时候 ...
- 《iOS设计模式解析》书籍目录
1.你好,设计模式 2.案例分析:设计一个应用程序 3.原型 4.工厂方法 5.抽象工厂 6.生成器 7.单例 8.适配器 9.桥接 10.外观 11.中介者 12.观察者 13.组合 14.迭代器 ...
- mysql odbc 配置详解
1.安装mysql 以及mysql odbc 要注意自己的版本 版本都要统一(32位 或者64位) 2.出现的error 1989 126错误代码 Error 1918. Error installi ...
- 吴裕雄 Bootstrap 前端框架开发——Bootstrap 辅助类:显示关闭按钮
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- 常用WinAPI函数整理------------转载
常用WinAPI函数整理原创 玩撕你 发布于2019-09-04 20:06:55 阅读数 101 收藏展开 之前的博客写了很多关于Windows编程的内容,在Windows环境下的黑客必须熟练掌握底 ...
- PaperReading20200221
CanChen ggchen@mail.ustc.edu.cn Busy... Human-level concept learning through probabilistic program i ...
- Flutter 使用json_model解析json生成dart文件
一.json_serializable使用步骤 1.集成json_serializable pubspec.yaml 添加以下依赖 dependencies: json_annotation: ^2. ...
- day14-Python运维开发基础(内置函数、pickle序列化模块、math数学模块)
1. 内置函数 # ### 内置函数 # abs 绝对值函数 res = abs(-10) print(res) # round 四舍五入 (n.5 n为偶数则舍去 n.5 n为奇数,则进一!) 奇进 ...
- Zookeeper集群搭建(单机多节点,伪集群,docker-compose集群)
Zookeeper介绍 原理简介 ZooKeeper是一个分布式的.开源的分布式应用程序协调服务.它公开了一组简单的原语,分布式应用程序可以在此基础上实现更高级别的同步.配置维护.组和命名服务.它的设 ...
- Python可视化 | Seaborn包—kdeplot和distplot
import pandas as pd import numpy as np import seaborn as sns import matplotlib import matplotlib.pyp ...