-->Osenbei

直接写中文了

Descriptions:

给出n行m列的0、1矩阵,每次操作可以将任意一行或一列反转,即这一行或一列中0变为1,1变为0。问通过任意多次这样的变换,最多可以使矩阵中有多少个1。

Sample Input

2 5
0 1 0 1 0
1 0 0 0 1
3 6
1 0 0 0 1 0
1 1 1 0 1 0
1 0 1 1 0 1
0 0

Sample Output

9
15
 
题目链接:
 

行数比较小,先不考虑对列的操作,将行数的所有情况举出来最多2^10种情况。对于已经固定了对行进行怎样的操作后,这种情况下对列的最优操作就是对每一列,如果此时1比0多就不变,不然就反转。实现在代码中就是一个for循环扫一遍。

AC代码:

#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#define mod 1000000007
#define eps 1e-6
#define ll long long
#define INF 0x3f3f3f3f
#define MEM(x,y) memset(x,y,sizeof(x))
#define Maxn 10005
using namespace std;
int ans;
int h,w;
int mp[][Maxn];
void dfs(int x)
{
if(x==h)
{
int sum=;//这个图中1的最大个数
for(int i=;i<w;i++)
{
int tmpsum=;//这一列中1的最大个数
for(int j=;j<h;j++)
{
if(mp[j][i]==)
tmpsum++;
}
sum+=max(tmpsum,h-tmpsum);//若1的个数>0的个数,则这一列不翻转,否则反转
}
ans=max(ans,sum);//更新答案
return;
}
dfs(x+);
for(int i=;i<w;i++)//把第x行翻转
mp[x][i]=!mp[x][i];
dfs(x+);
}
int main()
{
while(cin>>h>>w,h+w)//输入行列
{
for(int i=;i<h;i++)//输入数据
for(int j=;j<w;j++)
cin>>mp[i][j];
ans=;//答案初始化为0
dfs();
cout<<ans<<endl;
}
}
 

【Aizu - 0525】Osenbei (dfs)的更多相关文章

  1. 【Aizu - 0558】Cheese(bfs)

    -->Cheese 原文是日语,这里就写中文了 Descriptions: 在H * W的地图上有N个奶酪工厂,每个工厂分别生产硬度为1-N的奶酪.有一只老鼠准备从出发点吃遍每一个工厂的奶酪.老 ...

  2. 【POJ - 1950】Dessert(dfs)

    -->Dessert Descriptions: 给你一个数N(3<=N<=15);每个数之间有三种运算符“‘+’,‘-’,‘.’”.输出和值等于零的所有的运算情况及次数num,如果 ...

  3. 【OpenJ_Bailian - 2192】Zipper(dfs)

    Zipper Descriptions: Given three strings, you are to determine whether the third string can be forme ...

  4. 【POJ - 2078】Matrix(dfs)

    -->Matrix Descriptions: 输入一个n×n的矩阵,可以对矩阵的每行进行任意次的循环右移操作,行的每一次右移后,计算矩阵中每一列的和的最大值,输出这些最大值中的最小值. Sam ...

  5. 【UOJ#311】【UNR #2】积劳成疾(动态规划)

    [UOJ#311][UNR #2]积劳成疾(动态规划) UOJ Solution 考虑最大值分治解决问题.每次枚举最大值所在的位置,强制不能跨过最大值,左右此时不会影响,可以分开考虑. 那么设\(f[ ...

  6. 【UOJ#246】套路(动态规划)

    [UOJ#246]套路(动态规划) 题面 UOJ 题解 假如答案的选择的区间长度很小,我们可以做一个暴力\(dp\)计算\(s(l,r)\),即\(s(l,r)=min(s(l+1,r),s(l,r- ...

  7. 【LOJ#6074】子序列(动态规划)

    [LOJ#6074]子序列(动态规划) 题面 LOJ 题解 考虑一个暴力\(dp\). 设\(f[i][c]\)表示当前在第\(i\)位,并且以\(c\)结尾的子序列个数. 那么假设当前位为\(a\) ...

  8. 【POJ 3071】 Football(DP)

    [POJ 3071] Football(DP) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4350   Accepted ...

  9. 通俗地说逻辑回归【Logistic regression】算法(二)sklearn逻辑回归实战

    前情提要: 通俗地说逻辑回归[Logistic regression]算法(一) 逻辑回归模型原理介绍 上一篇主要介绍了逻辑回归中,相对理论化的知识,这次主要是对上篇做一点点补充,以及介绍sklear ...

随机推荐

  1. C#数字图像处理算法详解大全

    原文:C#数字图像处理算法详解大全 C#数字图像处理算法详解大全 网址http://dongtingyueh.blog.163.com/blog/#m=0 分享一个专业的图像处理网站(微像素),里面有 ...

  2. 算法之--字符串反转【python实现】

    题目描述 给定一个字符串,要求把字符串前面的若干个字符移动到字符串的尾部,如把字符串“abcdef”前面的2个字符'a'和'b'移动到字符串的尾部,使得原字符串变成字符串“cdefab”.请写一个函数 ...

  3. oracle data guard配置dg_broker

    https://community.oracle.com/docs/DOC-1007327 本文主要包括以下内容: 1.  配置dg broker,需要完成以下几个工作: 在主备库配置静态监听注册,注 ...

  4. ML:多变量代价函数和梯度下降(Linear Regression with Multiple Variables)

    代价函数cost function 公式: 其中,变量θ(Rn+1或者R(n+1)*1) 向量化: Octave实现: function J = computeCost(X, y, theta) %C ...

  5. java基础之super关键字

    一.在java里面,对于super关键字通常有两种用法: 1. 用在子类的构造方法里(初始化用),主要是调用父类的默认构造方法,如果父类有不止一个构造方法,可以通过super指定具体的构造函数,比如 ...

  6. C# ACCESS 修改表记录提示"UPDATE 语句语法错"问题

    错误的sql 语句如下: sqlStr =  "update tb_userInfo set passWord='" + pw + "' where userName=' ...

  7. visual studio添加docker支持简记

    很久以前学过一段时间的docker,那时装了电脑卡得受不了,学了一会就卸载了,最近电脑又装上了docker,感觉好像没有以前这么卡了,还是同一台电脑surface pro4, 试了一下visual s ...

  8. Qt实现网络播放器

        写了这么多的博客,关于网络的还不算多,经常有人询问一些关于网络传输.制作在线试听及下载音乐.构造及解析数据等的一些问题,今天就在这里一并讲解.   网络操作:     主要涉及:QNetwor ...

  9. c#编写的基于Socket的异步通信系统封装DLL--SanNiuSignal.DLL

    SanNiuSignal是一个基于异步socket的完全免费DLL:它里面封装了Client,Server以及UDP:有了这个DLL:用户不用去关心心跳:粘包 :组包:发送文件等繁琐的事情:大家只要简 ...

  10. IT职场初体验一

    自己学习计算机专业也算有两个年头了吧,对于这个刚刚IT入门的菜鸟,对IT职场充满了好奇和憧憬,本人大学也像很多大学生一样,进入计算机专业也不是自己最初想进入的专业,进入这个原本离自己有点遥远的行业,一 ...