F. Economic Difficulties

An electrical grid in Berland palaces consists of 2 grids: main and reserve. Wires in palaces are made of expensive material, so selling some of them would be a good idea!

Each grid (main and reserve) has a head node (its number is 1). Every other node gets electricity from the head node. Each node can be reached from the head node by a unique path. Also, both grids have exactly n nodes, which do not spread electricity further.

In other words, every grid is a rooted directed tree on n leaves with a root in the node, which number is 1. Each tree has independent enumeration and nodes from one grid are not connected with nodes of another grid.

Also, the palace has n electrical devices. Each device is connected with one node of the main grid and with one node of the reserve grid. Devices connect only with nodes, from which electricity is not spread further (these nodes are the tree's leaves). Each grid's leaf is connected with exactly one device.

In this example the main grid contains 6 nodes (the top tree) and the reserve grid contains 4 nodes (the lower tree). There are 3 devices with numbers colored in blue.

It is guaranteed that the whole grid (two grids and n devices) can be shown in this way (like in the picture above):

main grid is a top tree, whose wires are directed 'from the top to the down',

reserve grid is a lower tree, whose wires are directed 'from the down to the top',

devices — horizontal row between two grids, which are numbered from 1 to n from the left to the right,

wires between nodes do not intersect.

Formally, for each tree exists a depth-first search from the node with number 1, that visits leaves in order of connection to devices 1,2,…,n (firstly, the node, that is connected to the device 1, then the node, that is connected to the device 2, etc.).

Businessman wants to sell (remove) maximal amount of wires so that each device will be powered from at least one grid (main or reserve). In other words, for each device should exist at least one path to the head node (in the main grid or the reserve grid), which contains only nodes from one grid.

Input

The first line contains an integer n (1≤n≤1000) — the number of devices in the palace.

The next line contains an integer a (1+n≤a≤1000+n) — the amount of nodes in the main grid.

Next line contains a−1 integers pi (1≤pi≤a). Each integer pi means that the main grid contains a wire from pi-th node to (i+1)-th.

The next line contains n integers xi (1≤xi≤a) — the number of a node in the main grid that is connected to the i-th device.

The next line contains an integer b (1+n≤b≤1000+n) — the amount of nodes in the reserve grid.

Next line contains b−1 integers qi (1≤qi≤b). Each integer qi means that the reserve grid contains a wire from qi-th node to (i+1)-th.

The next line contains n integers yi (1≤yi≤b) — the number of a node in the reserve grid that is connected to the i-th device.

It is guaranteed that each grid is a tree, which has exactly n leaves and each leaf is connected with one device. Also, it is guaranteed, that for each tree exists a depth-first search from the node 1, that visits leaves in order of connection to devices.

Output

Print a single integer — the maximal amount of wires that can be cut so that each device is powered.

Examples

input

3

6

4 1 1 4 2

6 5 3

4

1 1 1

3 4 2

output

5

input

4

6

4 4 1 1 1

3 2 6 5

6

6 6 1 1 1

5 4 3 2

output

6

input

5

14

1 1 11 2 14 14 13 7 12 2 5 6 1

9 8 3 10 4

16

1 1 9 9 2 5 10 1 14 3 7 11 6 12 2

8 16 13 4 15

output

17

Note

For the first example, the picture below shows one of the possible solutions (wires that can be removed are marked in red):

The second and the third examples can be seen below:

题意

给你两棵树,每棵树都恰好有n个叶子,每个叶子都连着一个电机。

让你删除最多的边,使得每个电机都至少能够存在一条路径到某棵树的根。

note很清楚

题解

视频题解 https://www.bilibili.com/video/av77514280/

对于每棵树,维护l[i][j]表示我删掉这个子树的所有边之后,[i,j]这个范围的电机不保证能够全部连上我的根。

用一个dp[i]表示[1,i]区间内,全都能连上根最多能删除多少条边,那么转移就是dp[i]=max(dp[i],dp[j-1]+max(l[j][i]));这样转移。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 2005;
vector<int>G[2][maxn];
int dp[maxn],val[2][maxn][maxn],l[2][maxn],r[2][maxn],sz[2][maxn];
int n,a;
void dfs(int _,int x){
if(x!=1)sz[_][x]=1;
for(int i=0;i<G[_][x].size();i++){
int v = G[_][x][i];
dfs(_,v);
l[_][x]=min(l[_][x],l[_][v]);
r[_][x]=max(r[_][x],r[_][v]);
sz[_][x]+=sz[_][v];
}
val[_][l[_][x]][r[_][x]]=max(val[_][l[_][x]][r[_][x]],sz[_][x]);
}
int main(){
cin>>n;
for(int _=0;_<2;_++){
cin>>a;
for(int i=1;i<=a;i++){
l[_][i]=a+1;
r[_][i]=0;
}
for(int i=2;i<=a;i++){
int x;cin>>x;
G[_][x].push_back(i);
}
for(int i=1;i<=n;i++){
int x;cin>>x;
l[_][x]=r[_][x]=i;
}
dfs(_,1);
}
for(int i=1;i<=n;i++){
for(int j=i;j<=n;j++){
dp[j]=max(dp[j],dp[i-1]+max(val[0][i][j],val[1][i][j]));
}
}
cout<<dp[n]<<endl;
}

Codeforces Round #603 (Div. 2) F. Economic Difficulties dp的更多相关文章

  1. Codeforces Round #603 (Div. 2)F. Economic Difficulties

    F. Economic Difficulties 题目链接: https://codeforces.com/contest/1263/problem/F 题目大意: 两棵树,都有n个叶子节点,一棵树正 ...

  2. Codeforces Round #471 (Div. 2) F. Heaps(dp)

    题意 给定一棵以 \(1\) 号点为根的树.若满足以下条件,则认为节点 \(p\) 处有一个 \(k\) 叉高度为 \(m\) 的堆: 若 \(m = 1\) ,则 \(p\) 本身就是一个 \(k\ ...

  3. Codeforces Round #527 (Div. 3)F(DFS,DP)

    #include<bits/stdc++.h>using namespace std;const int N=200005;int n,A[N];long long Mx,tot,S[N] ...

  4. Codeforces Round #479 (Div. 3) F. Consecutive Subsequence (DP)

    题意:给你一个长度为\(n\)的序列,求一个最长的\({x,x+1,x+2,.....,x+k-1}\)的序列,输出它的长度以及每个数在原序列的位置. 题解:因为这题有个限定条件,最长序列是公差为\( ...

  5. Codeforces Round #485 (Div. 2) F. AND Graph

    Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...

  6. Codeforces Round #486 (Div. 3) F. Rain and Umbrellas

    Codeforces Round #486 (Div. 3) F. Rain and Umbrellas 题目连接: http://codeforces.com/group/T0ITBvoeEx/co ...

  7. Codeforces Round #501 (Div. 3) F. Bracket Substring

    题目链接 Codeforces Round #501 (Div. 3) F. Bracket Substring 题解 官方题解 http://codeforces.com/blog/entry/60 ...

  8. Codeforces Round #499 (Div. 1) F. Tree

    Codeforces Round #499 (Div. 1) F. Tree 题目链接 \(\rm CodeForces\):https://codeforces.com/contest/1010/p ...

  9. Codeforces Round #603 (Div. 2) A. Sweet Problem(水.......没做出来)+C题

    Codeforces Round #603 (Div. 2) A. Sweet Problem A. Sweet Problem time limit per test 1 second memory ...

随机推荐

  1. JS---DOM---点击操作---part2---14个案例

    案例1:点击按钮禁用文本框 <input type="button" value="禁用文本框" id="btn" /> < ...

  2. [转]UIPath进阶教程-6. Architecture & Publishing flow

    本文转自:https://blog.csdn.net/liaohenchen/article/details/88847597 版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议, ...

  3. Kafka 的No kafka server to stop报错处理

    使用kafka-server-stop.sh命令关闭kafka服务,发现无法删除,报错如下图No kafka server to stop 下面修改kafka-server-stop.sh将 PIDS ...

  4. 【使用篇二】SpringBoot整合SpringDataJPA(18)

    一.pom.xml添加依赖 <dependencies> <!--web--> <dependency> <groupId>org.springfram ...

  5. [译]Vulkan教程(03)开发环境

    [译]Vulkan教程(03)开发环境 这是我翻译(https://vulkan-tutorial.com)上的Vulkan教程的第3篇. In this chapter we'll set up y ...

  6. JeeSite | 保存信息修改记录封装

    前面写过两篇关于“保存信息修改记录”的内容,分别如下: JeeSite | 保存信息修改记录 JeeSite | 保存信息修改记录续 回顾         第一篇文章通过类字段的比较返回一个有字段值不 ...

  7. RabbitMQ 匿名队列断开问题定位记录

    RabbitMQ 匿名队列断开问题定位分析 1    问题现象 平台中,服务的信息交互通过RabbitMQ进行.在实际的使用中,发现系统启动后,就会出现status 监控的mq connection断 ...

  8. ETCD:配置参数

    原文地址:Configuration flags etcd通过配置文件,多命令行参数和环境变量进行配置, 可重用的配置文件是YAML文件,其名称和值由一个或多个下面描述的命令行标志组成.为了使用此文件 ...

  9. 为什么老外不愿意用MyBatis?

    作者:陈龙 www.zhihu.com/question/309662829 Spring 团队的Josh Long自己在Twitter上做了一个调查.1625次投票,样本量不算大,但也能说明问题.和 ...

  10. 《ServerSuperIO Designer IDE使用教程》- 7.增加机器学习算法,通讯采集数据与算法相结合。发布:4.2.5 版本

    v4.2.5更新内容:1.修复服务实例设置ClearSocketSession参数时,可能出现资源无法释放而造成异常的情况.2.修复关闭宿主程序后进程仍然无法退出的问题.2.增加机器学习框架.3.优化 ...