啊。。。好久没写了。。。可能是最后一篇学习笔记了吧

题目大意:给定序列求其在全排列中的排名&&给定排名求排列。

这就是康托展开&&逆康托展开要干的事了。下面依次介绍

一、康托展开

首先,知道它是干嘛的。

就是给定一个全排列之中的序列,求其在整个全排列中的排名。

给出式子:
$k=sum_{i=1}^n(n-i)!\sum_{j=i+1}^n(a_{k,i}>a_{k,j})$

解释一下:考虑这个序列的第i位,对于这个序列,只有前i位都小于等于它,第i位一定小于它的所有序列才会在它前面,于是对每一位考虑组合,就是这个结果了。

代码片:

ll ktz(ll *a)
{
ll ans=;
for(ll i=;i<=n;i++)
{
ll cnt=;
for(ll j=i+;j<=n;j++)
{
if(a[i]>a[j])//对每一位考虑
cnt++;
}
ans+=cnt*fac[n-i];
}
return ans+;//因为求的是前有多少,所有排名+1
}

二、逆康托展开

好了,那有了排名怎么求数组呢?

由上述康托展开可得,要得到数组的每一位,就必须确定前面有多少比它大的。

于是反过来,对每一位考虑可以由多少比它大的,也就是求上述式子中括号里的东西,然后一位一位还原,就成了原序列

过程:首先,同上,-1

然后对每一位,把序号除以对应的fac,确定一个没用过的数,作为当前的答案即可

代码片:

ll nkt(ll k)
{
k-=;
ll j;
memset(vis,,sizeof(vis));
for(ll i=;i<=n;i++)
{
ll s=k/fac[n-i];
for(j=;j<=n;j++)
{
if(!vis[j])
{
if(!s)
break;
s--;
}
}
printf("%d ",j);
vis[j]=;
k%=fac[n-i];
}
printf("\n");
}

(完)

康托展开&逆康托展开学习笔记的更多相关文章

  1. 康拓展开 & 逆康拓展开 知识总结(树状数组优化)

    康拓展开 : 康拓展开,难道他是要飞翔吗?哈哈,当然不是了,康拓具体是哪位大叔,我也不清楚,重要的是 我们需要用到它后面的展开,提到展开,与数学相关的,肯定是一个式子或者一个数进行分解,即 展开. 到 ...

  2. 多项式求逆/分治FFT 学习笔记

    一.多项式求逆 给定一个多项式 \(F(x)\),请求出一个多项式 \(G(x)\), 满足 \(F(x) * G(x) \equiv 1 ( \mathrm{mod\:} x^n )\).系数对 \ ...

  3. Spring学习笔记--spring+mybatis集成

    前言: 技术的发展, 真的是日新月异. 作为javaer, 都不约而同地抛弃裸写jdbc代码, 而用各种持久化框架. 从hibernate, Spring的JDBCTemplate, 到ibatis, ...

  4. Learning hard 学习笔记

    第一章 你真的了解C#吗 1.什么是C#, 微软公司,面向对象,运行于.NET Framework之上, 2.C#能编写哪些应用程序, Windows应用桌面程序,Web应用程序,Web服务, 3.什 ...

  5. LightOJ1060 nth Permutation(不重复全排列+逆康托展开)

    一年多前遇到差不多的题目http://acm.fafu.edu.cn/problem.php?id=1427. 一开始我还用搜索..后来那时意外找到一个不重复全排列的计算公式:M!/(N1!*N2!* ...

  6. nyoj 139——我排第几个|| nyoj 143——第几是谁? 康托展开与逆康托展开

    讲解康托展开与逆康托展开.http://wenku.baidu.com/view/55ebccee4afe04a1b071deaf.html #include<bits/stdc++.h> ...

  7. 题解报告:NYOJ 题目143 第几是谁?(逆康托展开)

    描述 现在有"abcdefghijkl”12个字符,将其按字典序排列,如果给出任意一种排列,我们能说出这个排列在所有的排列中是第几小的.但是现在我们给出它是第几小,需要你求出它所代表的序列. ...

  8. HDU1027 Ignatius and the Princess II( 逆康托展开 )

    链接:传送门 题意:给出一个 n ,求 1 - n 全排列的第 m 个排列情况 思路:经典逆康托展开,需要注意的时要在原来逆康托展开的模板上改动一些地方. 分析:已知 1 <= M <= ...

  9. Codeforces-121C(逆康托展开)

    题目大意: 给你两个数n,k求n的全排列的第k小,有多少满足如下条件的数: 首先定义一个幸运数字:只由4和7构成 对于排列p[i]满足i和p[i]都是幸运数字 思路: 对于n,k<=1e9 一眼 ...

随机推荐

  1. T4 模板

    T4模板入门 T4,即4个T开头的英文字母组合:Text Template Transformation Toolkit.T4(Text Template Transformation Toolkit ...

  2. layui navTree 动态渲染菜单组件介绍

    navTree.js 简介 extends/navTree.js 是一个基于 layui 扩展的模块化组件,用于构建后台布局系统中的垂直导航菜单与水平导航菜单. extends/navTree.js ...

  3. Hadoop实战1:MapR在ubuntu集群中的安装

    由于机器学习算法在处理大数据处理的时候在所难免的会效率降低,公司需要搭建hadoop集群,最后采用了商业版的Hadoop2(MapR). 官网: http://doc.mapr.com/display ...

  4. Unix 线程共享创建进程打开的文件资源(1)

    执行环境:Linux ubuntu 4.4.0-31-generic #50-Ubuntu SMP Wed Jul 13 00:07:12 UTC 2016 x86_64 x86_64 x86_64 ...

  5. [NOIp2009] luogu P1073 最优贸易

    md 我发现跟你们聊天贼没意思. 题目描述 我觉得描述挺好,不改了吧. Solution 容易发现这是道 dfs + DP 的乱搞题. 设 f[x]f[x]f[x] 表示到 xxx 这个点的最优答案. ...

  6. 80%面试官不知道的dubbo → 【redis注册中心】

    dubbo的redis注册中心配置和注意事项 配置provider和consumer项目的pom.xml,增加如下2个依赖: org.apache.commons commons-pool2 2.4. ...

  7. HDU 5616 Jam's balance(01背包)

    题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=5616 题目: Jam's balance Time Limit: 2000/1000 MS (Java ...

  8. Tensorflow从开始到放弃

    刚刚开始学习神经网络,使用tensorflow,发现不会上网真的是个大坑. 在此记录一路以来已经遇到的坑和即将遇到的坑(非技术问题). 我是不会放弃的. Q:能够访问的tensorflow官网: A: ...

  9. 百万年薪python之路 -- 装饰器进阶

    本文链接:https://blog.csdn.net/xiemanR/article/details/72510885 一:函数装饰函数 def wrapFun(func): def inner(a, ...

  10. Apache常见配置

      一.yum安装与配置 1.1安装: [root@apache ~]# yum install http\* -y [root@apache ~]# echo "test01" ...