更好的阅读体验

Portal

Portal1: Luogu

Portal2: LibreOJ

Portal3: Vijos

Description

小T是一名质量监督员,最近负责检验一批矿产的质量。这批矿产共有\(n\)个矿石,从\(1\)到\(n\)逐一编号,每个矿石都有自己的重量\(w_i\)以及价值\(v_i\)。检验矿产的流程是:

  1. 给定\(m\)个区间\([L_i, R_i]\);

  2. 选出一个参数\(W\);

  3. 对于一个区间\([L_i, R_i]\),计算矿石在这个区间上的检验值\(Y_i\):

$Y_i=\sum_j1 \times \sum_j{v_j},\ j\in[L_i, R_i]$ 且 $w_j\ge W,\ j$是矿石编号

这批矿产的检验结果\(Y\)为各个区间的检验值之和。即:\(Y_1 + Y_2 + \cdots +Y_m\)。

若这批矿产的检验结果与所给标准值\(S\)相差太多,就需要再去检验另一批矿产。小T不想费时间去检验另一批矿产,所以他想通过调整参数\(W\)的值,让检验结果尽可能的靠近标准值\(S\),即使得\(S - Y\)的绝对值最小。请你帮忙求出这个最小值。

Input

输入第一行包含三个整数\(n\),\(m\),\(S\),分别表示矿石的个数、区间的个数和标准值;

接下来的\(n\)行,每行\(2\)个整数,中间用空格隔开,第\(i + 1\)行表示\(i\)号矿石的重量\(w_i\)和价值\(v_i\);

接下来的\(m\)行,表示区间,每行\(2\)个整数,中间用空格隔开,第\(i + n + 1\)行表示区间\([L_i, R_i]\)的两个端点\(L_i\)和\(R_i\)。注意:不同区间可能重合或相互重叠。

Output

一个整数,表示所求的最小值。

Sample Input

5 3 15
1 5
2 5
3 5
4 5
5 5
1 5
2 4
3 3

Sample Output

10

Sample Explain

当\(W\)选\(4\)的时候,三个区间上检验值分别为\(20, 5, 0\),这批矿产的检验结果为\(25\),此时与标准值\(S\)相差最小为\(10\)。

Hint

对于\(10\%\)的数据,有\(1 \le n, m \le 10\);

对于\(30\%\)的数据,有\(1 \le n, m \le 500\);

对于\(50\%\)的数据,有\(1 \le n, m \le 5,000\);

对于\(70\%\)的数据,有\(1 \le n, m \le 10,000\);

对于\(100\%\)的数据,有\(1 \le n, m \le 200,000 ,0 < w_i, v_i \le 10^6,0 < S \le 10^{12},1 \le L_i \le R_i \le n\)。

Solution

这道题直接在\([0, \max{w[i]}]\)二分枚举\(W\),对于每一个枚举出来的\(w\),暴力计算每一个区间的检验值和,这里使用前缀和优化。

Code

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath> using namespace std; typedef long long LL;
const LL INF = 0x7f7f7f7f7f7f7f7f7f7f;//把ans的初始值设大一点,否则会WA很多
const int MAXN = 200005;
int n, m, w[MAXN], v[MAXN], L[MAXN], R[MAXN];
LL S, l, r, mid, ans, sum1[MAXN], sum2[MAXN];//注意开long long
inline bool check(LL x) {
for (int i = 1; i <= n; i++)
if (x <= w[i]) {//如果符合要求的化
sum1[i] = sum1[i - 1] + 1;
sum2[i] = sum2[i - 1] + v[i];
} else {
sum1[i] = sum1[i - 1];
sum2[i] = sum2[i - 1];
}
LL s = 0;
for (int i = 1; i <= m; i++)
s += (sum2[R[i]] - sum2[L[i] - 1]) * (sum1[R[i]] - sum1[L[i] - 1]);//暴力计算每一个区间,累加起来
if (ans > fabs(s - S)) ans = fabs(s - S);//计算与标准值相差的最小值
if (S > s) return 1; else return 0;
}
int main() {
scanf("%d%d%lld", &n, &m, &S);
for (int i = 1; i <= n; i++) {
scanf("%d%d", &w[i], &v[i]);
if (w[i] > r) r = w[i];//求区间的右边界(取w[i]的最大值)
}
for (int i = 1; i <= m; i++)
scanf("%d%d", &L[i], &R[i]);
r++;
l = 0;
ans = INF;
while (l < r) {
mid = l + r >> 1;//二分枚举
if (check(mid)) r = mid; else l = mid + 1;//如果大于标准值就往降低要求,否则就提高要求
}
printf("%lld\n", ans);
return 0;
}

Attachment

测试数据下载:https://www.lanzous.com/i527v3i

『题解』洛谷P1314 聪明的质监员的更多相关文章

  1. 洛谷P1314 聪明的质监员

    P1314 聪明的质监员 题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: ...

  2. 洛谷P1314 聪明的质监员 题解

    题目 聪明的质监员 题解 这道题和之前Sabotage G的那道题类似,都是用二分答案求解(这道题还要简单一些,不需要用数学推导二分条件,只需简单判断一下即可). 同时为了降低复杂度,肯定不能用暴力求 ...

  3. 洛谷 P1314 聪明的质监员 —— 二分

    题目:https://www.luogu.org/problemnew/show/P1314 显然就是二分那个标准: 当然不能每个区间从头到尾算答案,所以要先算出每个位置被算了几次: 不知为何自己第一 ...

  4. [NOIP2011] 提高组 洛谷P1314 聪明的质监员

    题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: 1 .给定m 个区间[L ...

  5. 洛谷 P1314 聪明的质监员【二分+前缀和】

    真是zz, 题目很显然是二分W,然后判断,我一开始是用线段树维护当前w[i]>W的个数和v(公式就是区间满足要求的个数*满足要求的v的和),然后T成70 后来想到树状数组差分常数或许会小,于是改 ...

  6. 洛谷——P1314 聪明的质监员

    https://www.luogu.org/problem/show?pid=1314 题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每 ...

  7. 『题解』洛谷P1063 能量项链

    原文地址 Problem Portal Portal1:Luogu Portal2:LibreOJ Portal3:Vijos Description 在\(Mars\)星球上,每个\(Mars\)人 ...

  8. 『题解』洛谷P1993 小K的农场

    更好的阅读体验 Portal Portal1: Luogu Description 小\(K\)在\(\mathrm MC\)里面建立很多很多的农场,总共\(n\)个,以至于他自己都忘记了每个农场中种 ...

  9. 『题解』洛谷P2296 寻找道路

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 在有向图\(\mathrm G\)中,每条边的长度均为\(1\),现给定起点和终点 ...

随机推荐

  1. Java工程师学习指南(初级篇)

    Java工程师学习指南 初级篇 最近有很多小伙伴来问我,Java小白如何入门,如何安排学习路线,每一步应该怎么走比较好.原本我以为之前的几篇文章已经可以解决大家的问题了,其实不然,因为我之前写的文章都 ...

  2. 数据存储检索之B+树和LSM-Tree

    作为一名应用系统开发人员,为什么要关注数据内部的存储和检索呢?首先,你不太可能从头开始实现一套自己的存储引擎,往往需要从众多现有的存储引擎中选择一个适合自己应用的存储引擎.因此,为了针对你特定的工作负 ...

  3. 创建SSM项目所需

    一.mybatis所需: 1.相关jar包 2.创数据库+Javabean类 3.接口+写SQL的xml映射文件 4.核心配置文件:SqlMapConfig.xml 二.springMVC所需: 1. ...

  4. Kubernetes快速入门

    二.Kubernetes快速入门 (1)Kubernetes集群的部署方法及部署要点 (2)部署Kubernetes分布式集群 (3)kubectl使用基础 1.简介 kubectl就是API ser ...

  5. 安装Ubuntu时界面显示不全,无法点击continue按钮

    按住win键和鼠标左键即可拖动界面

  6. Java 面试-即时编译( JIT )

    当我们在写代码时,一个方法内部的行数自然是越少越好,这样逻辑清晰.方便阅读,其实好处远不止如此,通过即时编译,甚至可以提高执行时的性能,今天就让我们好好来了解一下其中的原理. 简介 当 JVM 的初始 ...

  7. cmd 环境下载文件的几种方法

    今天渗透测试面试提到cmd下载文件  ,自己只写了js和certutil,还有几种常见的方法自己没想起来 这里记录和总结下 . (自己还是太菜太垃圾.) 0x01 certutil certutil ...

  8. [BZOJ2724] 蒲公英

    题目背景 亲爱的哥哥: 你在那个城市里面过得好吗? 我在家里面最近很开心呢.昨天晚上奶奶给我讲了那个叫「绝望」的大坏蛋的故事的说!它把人们的房子和田地搞坏,还有好多小朋友也被它杀掉了.我觉得把那么可怕 ...

  9. kafka JavaAPI遇到的坑

    症状:Producer连不上,提示没有可用Node. 解决:在安装kafka的目录中配置server.properties 1.listeners=PLAINTEXT://:9092或listener ...

  10. 百万年薪python之路 -- 带颜色的print

    带颜色的print print输出带颜色的方法详解 书写格式: 开头部分:\033[显示方式;前景色;背景色m + 结尾部分:\033[0m ​ 注意:开头部分的三个参数:显示方式,前景色,背景色是可 ...