洛谷P3157 [CQOI2011]动态逆序对
题目大意:
给定\(1\)到\(n\)的一个排列,按照给定顺序依次删除\(m\)个元素,计算每个元素删除之前整个序列的逆序对数量
基本套路:删边变加边
那么我们不就是求满足\(pos_i<pos_j,tim_i<tim_j,num_i>num_j\)的数量嘛
先按\(tim\)排序,然后归并\(pos_i\),树状数组\(num_i\)
不过这道题我们需要正反跑两个\(cdq\),因为我们需要分开统计\(pos_i<pos_j,num_i>num_j\)和\(pos_i>pos_j,num_i<num_j\)的贡献
但是我压缩到一个\(cdq\)里了\(emmmm\)
需要稍微注意的一点是,我们需要把答案累加的令一个\(ret_i\)数组中,其中\(ret_i\)表示在\(i\)时刻新产生了多少逆序对,最后还需要输出前缀和
不粘代码是不是太短了
#include<bits/stdc++.h>
using namespace std;
namespace red{
#define int long long
#define mid ((l+r)>>1)
#define lowbit(x) ((x)&(-x))
inline int read()
{
int x=0;char ch,f=1;
for(ch=getchar();(ch<'0'||ch>'9')&&ch!='-';ch=getchar());
if(ch=='-') f=0,ch=getchar();
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return f?x:-x;
}
const int N=1e5+10;
int n,m,idx,tot;
int pos[N];
int st[N];
int ret[N];
struct point
{
int x,id,tim;
int val;
inline bool operator < (const point &t) const
{
if(tim^t.tim) return tim<t.tim;
return id<t.id;
}
}a[N<<2],t[N<<2];
int tr[N<<1];
inline void update(int x,int k)
{
for(int i=x;i<=n;i+=lowbit(i)) tr[i]+=k;
}
inline int query(int y)
{
int ret=0;
for(int i=y;i;i-=lowbit(i))
ret+=tr[i];
return ret;
}
inline void cdq(int l,int r)
{
if(l==r) return;
cdq(l,mid);
cdq(mid+1,r);
int tl=l,tr=mid+1,tot=l;
while(tl<=mid&&tr<=r)
{
if(a[tl].id<=a[tr].id) update(a[tl].x,1),t[tot++]=a[tl++];
else ret[a[tr].tim]+=query(n)-query(a[tr].x),t[tot++]=a[tr++];
}
while(tl<=mid) update(a[tl].x,1),t[tot++]=a[tl++];
while(tr<=r) ret[a[tr].tim]+=query(n)-query(a[tr].x),t[tot++]=a[tr++];
for(int i=l;i<=mid;++i) update(a[i].x,-1);
tl=mid,tr=r;
while(tl>=l&&tr>=mid+1)
{
if(a[tl].id>=a[tr].id) update(a[tl].x,1),--tl;
else ret[a[tr].tim]+=query(a[tr].x-1),--tr;
}
while(tl>=l) update(a[tl].x,1),--tl;
while(tr>=mid+1) ret[a[tr].tim]+=query(a[tr].x-1),--tr;
for(int i=l;i<=mid;++i) update(a[i].x,-1);
for(int i=l;i<=r;++i) a[i]=t[i];
}
inline void main()
{
n=read(),m=read();
for(int x,i=1;i<=n;++i)
{
x=read();
pos[x]=i;
a[i].x=x;
a[i].id=i;
a[i].tim=1;
}
for(int x,tmp,i=1;i<=m;++i)
{
x=read();
tmp=pos[x];
a[tmp].tim=m-i+2;
}
sort(a+1,a+n+1);
cdq(1,n);
for(int i=1;i<=m+1;++i) ret[i]+=ret[i-1];
for(int i=m+1;i>=2;--i) printf("%lld\n",ret[i]);
}
}
signed main()
{
red::main();
return 0;
}
洛谷P3157 [CQOI2011]动态逆序对的更多相关文章
- 洛谷 P3157 [CQOI2011]动态逆序对 解题报告
P3157 [CQOI2011]动态逆序对 题目描述 对于序列\(A\),它的逆序对数定义为满足\(i<j\),且\(A_i>A_j\)的数对\((i,j)\)的个数.给\(1\)到\(n ...
- 洛谷 P3157 [CQOI2011]动态逆序对(树套树)
题面 luogu 题解 树套树(树状数组套动态开点线段树) 静态使用树状数组求逆序对就不多说了 用线段树代替树状数组,外面套树状数组统计每个点逆序对数量 设 \(t1[i]\)为\(i\)前面有多少个 ...
- 洛谷 P3157 [CQOI2011]动态逆序对 | CDQ分治
题目:https://www.luogu.org/problemnew/show/3157 题解: 1.对于静态的逆序对可以用树状数组做 2.我们为了方便可以把删除当成增加,可以化动为静 3.找到三维 ...
- P3157 [CQOI2011]动态逆序对(树状数组套线段树)
P3157 [CQOI2011]动态逆序对 树状数组套线段树 静态逆序对咋做?树状数组(别管归并QWQ) 然鹅动态的咋做? 我们考虑每次删除一个元素. 减去的就是与这个元素有关的逆序对数,介个可以预处 ...
- P3157 [CQOI2011]动态逆序对
P3157 [CQOI2011]动态逆序对 https://www.luogu.org/problemnew/show/P3157 题目描述 对于序列A,它的逆序对数定义为满足i<j,且Ai&g ...
- P3157 [CQOI2011]动态逆序对 (CDQ解决三维偏序问题)
P3157 [CQOI2011]动态逆序对 题目描述 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任 ...
- [Luogu P3157][CQOI2011]动态逆序对 (树套树)
题面 传送门:[CQOI2011]动态逆序对 Solution 一开始我看到pty巨神写这套题的时候,第一眼还以为是个SB题:这不直接开倒车线段树统计就完成了吗? 然后冷静思考了一分钟,猛然发现单纯的 ...
- luogu P3157 [CQOI2011]动态逆序对(CDQ分治)
题目描述 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序 ...
- Luogu P3157 [CQOI2011]动态逆序对
题目链接 \(Click\) \(Here\) 这个题有点卡常数..我的常数比较大所以是吸着氧气跑过去的... 题意:计算对于序列中每个位置\(p\),\([1,p-1]\)区间内比它大的数的个数,和 ...
随机推荐
- 图书分享 -《Natural Language Processing with Python》
-<Natural Language Processing with Python> 链接:https://pan.baidu.com/s/1_oalRiUEw6bXbm2dy5q_0Q ...
- plsql查询数据显示为乱码解决方案
1.首先安装plsql之后连接数据库,发现使用sql查询出来的中文数据是??,即乱码.原因,因为数据库的编码与本地的编码不一致,plsql默认加载的是本机win10的编码. 2.解决办法: 参数如下: ...
- 14-认识DjangoRESTframework
了解DjangoRESTframework 现在流行的前后端分离Web应用模式,然而在开发Web应用中,有两种应用模式:1.前后端不分离 2.前后端分离. 1.前后端不分离 在前后端不分离中,前端看见 ...
- Appium+java --连接模拟器画面倒过来的问题
引用文章:https://blog.csdn.net/testerYu/article/details/90024049 工具 夜神模拟器 appium 现象 通过代码运行截图操作,结果全是倒着的如下 ...
- java循环定时器@Scheduled的使用
@Scheduled 注解 用于定时循环执行任务 例如: @Scheduled(cron="0 */10 * * * ?") 表示每隔十分钟执行一次 每隔5秒执行一次:" ...
- Git分布式版本控制器使用
前言: 使用Git版本控制器差不多有一年多的时间了,在这一年多的时间里对这个传说的的分布式版本控制工具有了一定的了解.在实战项目开发中,对关于如何在通过Git提交项目,以及如何使用Git命令对提交的文 ...
- 最全的.NET Core跨平台微服务学习资源
一.Asp.net Core基础 微软中文官网:https://docs.microsoft.com/zh-cn/aspnet/core/getting-started/ 微软英文官网:https:/ ...
- java基础(13):static、final、匿名对象、内部类、包、修饰符、代码块
1. final关键字 1.1 final的概念 继承的出现提高了代码的复用性,并方便开发.但随之也有问题,有些类在描述完之后,不想被继承,或者有些类中的部分方法功能是固定的,不想让子类重写.可是当子 ...
- Javase之内部类概述
内部类概述 把类定义在其他类的内部就称为内部类 class A{ class B{ } } B就称为内部类,A称为外部类. 内部类的访问特点 内部类直接访问外部类成员,包括私有. 外部类要访问内部类要 ...
- 基于token机制鉴权架构
常见的鉴权方式有两种,一种是基于session,另一种是基于token方式的鉴权,我们来浅谈一下两种 鉴权方式的区别. 两种鉴权方式对比 session 安全性:session是基于cookie进行用 ...