https://www.cnblogs.com/rucwxb/p/10277217.html

Transformer —— attention is all you need

Transformer模型是2018年5月提出的,可以替代传统RNN和CNN的一种新的架构,用来实现机器翻译,论文名称是attention is all you need。无论是RNN还是CNN,在处理NLP任务时都有缺陷。CNN是其先天的卷积操作不很适合序列化的文本,RNN是其没有并行化,很容易超出内存限制(比如50tokens长度的句子就会占据很大的内存)。

下面左图是transformer模型一个结构,分成左边Nx框框的encoder和右边Nx框框的decoder,相较于RNN+attention常见的encoder-decoder之间的attention(上边的一个橙色框),还多出encoder和decoder内部的self-attention(下边的两个橙色框)。每个attention都有multi-head特征。最后,通过position encoding加入没考虑过的位置信息。 下面从multi-head attention,self-attention, position encoding几个角度介绍。

multi-head attention:   
将一个词的vector切分成h个维度,求attention相似度时每个h维度计算。由于单词映射在高维空间作为向量形式,每一维空间都可以学到不同的特征,相邻空间所学结果更相似,相较于全体空间放到一起对应更加合理。比如对于vector-size=512的词向量,取h=8,每64个空间做一个attention,学到结果更细化。

self-attention:   
每个词位的词都可以无视方向和距离,有机会直接和句子中的每个词encoding。比如上面右图这个句子,每个单词和同句其他单词之间都有一条边作为联系,边的颜色越深表明联系越强,而一般意义模糊的词语所连的边都比较深。比如:law,application,missing,opinion。。。

position encoding:   
因为transformer既没有RNN的recurrence也没有CNN的convolution,但序列顺序信息很重要,比如你欠我100万明天要还和我欠你100万明天要还的含义截然不同。。。   transformer计算token的位置信息这里使用正弦波↓,类似模拟信号传播周期性变化。这样的循环函数可以一定程度上增加模型的泛化能力。

但BERT直接训练一个position embedding来保留位置信息,每个位置随机初始化一个向量,加入模型训练,最后就得到一个包含位置信息的embedding(简单粗暴。。),最后这个position embedding和word embedding的结合方式上,BERT选择直接拼接。

Transformer —— attention is all you need的更多相关文章

  1. Attention & Transformer

    Attention & Transformer seq2seq; attention; self-attention; transformer; 1 注意力机制在NLP上的发展 Seq2Seq ...

  2. Paper Reading - Attention Is All You Need ( NIPS 2017 ) ★

    Link of the Paper: https://arxiv.org/abs/1706.03762 Motivation: The inherently sequential nature of ...

  3. [NLP] REFORMER: THE EFFICIENT TRANSFORMER

    1.现状 (1) 模型层数加深 (2) 模型参数量变大 (3) 难以训练 (4) 难以fine-tune 2. 单层参数量和占用内存分析 层 参数设置 参数量与占用内存 1 layer 0.5Bill ...

  4. (转)How Transformers Work --- The Neural Network used by Open AI and DeepMind

    How Transformers Work --- The Neural Network used by Open AI and DeepMind Original English Version l ...

  5. 文本建模、文本分类相关开源项目推荐(Pytorch实现)

    Awesome-Repositories-for-Text-Modeling repo paper miracleyoo/DPCNN-TextCNN-Pytorch-Inception Deep Py ...

  6. 【NLP】彻底搞懂BERT

    # 好久没更新博客了,有时候随手在本上写写,或者Evernote上记记,零零散散的笔记带来零零散散的记忆o(╥﹏╥)o..还是整理到博客上比较有整体性,也方便查阅~ 自google在2018年10月底 ...

  7. CVPR2020|3D-VID:基于LiDar Video信息的3D目标检测框架

    作者:蒋天园 Date:2020-04-18 来源:3D-VID:基于LiDar Video信息的3D目标检测框架|CVPR2020 Brief paper地址:https://arxiv.org/p ...

  8. ACNet: 特别的想法,腾讯提出结合注意力卷积的二叉神经树进行细粒度分类 | CVPR 2020

    论文提出了结合注意力卷积的二叉神经树进行弱监督的细粒度分类,在树结构的边上结合了注意力卷积操作,在每个节点使用路由函数来定义从根节点到叶子节点的计算路径,结合所有叶子节点的预测值进行最终的预测,论文的 ...

  9. Deformable 可变形的DETR

    Deformable 可变形的DETR This repository is an official implementation of the paper Deformable DETR: Defo ...

随机推荐

  1. layui获取checkbox复选框值

    获取layui表单复选框已选中的数据 HTML <!DOCTYPE html> <html> <head> <meta charset="utf-8 ...

  2. 【2019.7.20 NOIP模拟赛 T1】A(A)(暴搜)

    打表+暴搜 这道题目,显然是需要打表的,不过打表的方式可以有很多. 我是打了两个表,分别表示每个数字所需的火柴棒根数以及从一个数字到另一个数字,除了需要去除或加入的火柴棒外,至少需要几根火柴棒. 然后 ...

  3. 阿里Sentinel整合Zuul网关详解

    前面我们讲解了Sentinel整合Spring Cloud Gateway,详细请查看文章:阿里Sentinel支持Spring Cloud Gateway啦 目前来说,大部分公司线上的网关应该是Zu ...

  4. 【转】python中的闭包

    转自:http://www.cnblogs.com/ma6174/archive/2013/04/15/3022548.html python中的闭包 什么是闭包? 简单说,闭包就是根据不同的配置信息 ...

  5. Java实现字符串反转【Leetcode】

    Write a function that reverses a string. The input string is given as an array of characters char[]. ...

  6. webrtc笔记(5): 基于kurento media server的多人视频聊天示例

    这是kurento tutorial中的一个例子(groupCall),用于多人音视频通话,效果如下: 登录界面: 聊天界面: 运行方法: 1.本地用docker把kurento server跑起来 ...

  7. 百度APP移动端网络深度优化实践分享(三):移动端弱网优化篇

    本文由百度技术团队“蔡锐”原创发表于“百度App技术”公众号,原题为<百度App网络深度优化系列<三>弱网优化>,感谢原作者的无私分享. 一.前言 网络优化解决的核心问题有三个 ...

  8. 优雅的解决springboot Aop @Cacheable this不生效

    问题描述:在同一个类中springAop不生效,例如在同一个类中没有 @Cacheable的方法调用本类有 @Cacheable的方法,则缓存不会设置. 原因:springaop基于java prox ...

  9. HTTP和RPC是现代微服务架构,HTTP和RPC是现代微服务架构

    .NET Core使用gRPC打造服务间通信基础设施   一.什么是RPC rpc(远程过程调用)是一个古老而新颖的名词,他几乎与http协议同时或更早诞生,也是互联网数据传输过程中非常重要的传输机制 ...

  10. pixijs shader贴图扫光效果

    pixijs shader贴图扫光效果 直接贴代码 const app = new PIXI.Application({ transparent: true }); document.body.app ...