Problem

Description

设 \(d(x)\) 为 \(x\) 的约数个数,给定 \(N\)、\(M\),求

\[\sum_{i=1}^N \sum_{j=1}^M d(ij)
\]

Input Format

输入文件包含多组测试数据。

第一行,一个整数 \(T\),表示测试数据的组数。

接下来的 \(T\) 行,每行两个整数 \(N\)、\(M\)。

Output Format

\(T\) 行,每行一个整数,表示你所求的答案。

Sample

Input

2
7 4
5 6

Output

110
121

Range

对于所有的数据,\(1 \leq N, M \leq 50000,\ 1 \leq T \leq 50000\)。

Algorithm

莫比乌斯反演

Mentality

显然是莫比乌斯反演啊!

不过做这题的话,我们不难发现:\(d(ij)\) 非常的不好求!如果枚举因数的话,那肯定会出锅,因为 \(ij\) 最高有 \(10^{10}\) ,所以必定超时。那怎么办呢?

可以考虑从 \(i\) 与 \(j\) 的因数入手。

那么我们先考虑 \(i\) ,对于任意一个数 \(i\) ,它必定都能分解成 \(i=\prod_{p\in prime}p^{x_p}\) 次方这样的形式,其中 \(x\) 数列为 \(i\) 的每个质因子的次数序列。

所以,我们先考虑怎么求 \(d(i)\) ,我们可以枚举 \(i\) 的每个质因子选多少个乘起来,由于每一个不同的数分解成的质因数乘法必定是唯一的,所以我们只需要枚举有多少个本质不同的质因数乘法序列即可。由于还要再加上不选这个因数的选择,所以 \(d(i)\) 的计算方法即为:

\[d(i)=\prod_{p\in prime}(x_p+1)
\]

从这个角度入手,我们就可以考虑如何计算 \(d(ij)\) 了,设 \(y\) 数列为 \(j\) 的每个质因子次数序列,则也有:

\[d(j)=\prod_{p\in prime}(y_p+1)
\]

那么如何计算 \(d(ij)\) 呢?其实从枚举质因子的角度来看,就很简单了。我们可以枚举 \(i\) 和 \(j\) 的因数 \(a|i\) 与 \(b|j\) ,则 \(ab\) 亦为 \(ij\) 的因数之一。不难发现,我们的重点是在枚举两个因数的时候,避免两个因数的质因数分解序列的乘积与之前出现过的乘积有重合,那怎么办呢?

回忆一下:当我们思考怎么计算 \(d(i)\) 的时候,我们的第一想法是可以枚举每个质因子选多少个,这种时候,对于一个质因子 \(p\) 而言,它在枚举序列中会被枚举出 \(x_p\) 种不同的大小,即:\(p^1,p^2,\dots ,p^{x_p}\) 这几个不同的数。也即 \(p\) 这一位总共会被枚举 \(x_p\) 次。

那么我们发现,当在计算 \(d(ij)\) 时,只需要保证每个质因子被枚举相应次数即可。

换句话说,对于 \(p|ij\) ,它理应被枚举 \(x_p+y_p\) 次!

那么当我们枚举 \(a|i\) 和 \(b|j\) 时,应该怎么处理呢?

其实这时,你会发现一个很简单的事情,那就是我们只需要确保 \(gcd(a,b)=1\) ,那么 \(a,b\) 中就不会含有相同的质因子。那么当我们枚举某个质因子 \(p|a\) 的时候,它会被枚举 \(x_p\) 次,而当我们枚举 \(p|b\) 时,它会被枚举 \(y_p\) 次!

换句话说,只需要确保 \(gcd(a,b)=1\) ,就能使枚举过程中,不会出现重复的质因子序列了!

所以,我们可以得到 \(d(ij)\) 的表达式了:

\[d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]
\]

接下来就是很简单的套路了!

先设 \(n\le m\)

\[\sum_{i=1}^n \sum_{j=1}^m d(ij)
\]

\[\sum_{i=1}^n \sum_{j=1}^m \sum_{x|i}\sum_{y|j}[gcd(x,y)=1]
\]

接着,根据常见套路,我们改为枚举 \(x,y\) :

\[\sum_{x=1}^n \sum_{y=1}^m [gcd(x,y)=1]\sum_{i=1}^{n}\sum_{j=1}^m [x|i\&\&y|j]
\]

\[\sum_{x=1}^n \sum_{y=1}^m [gcd(x,y)=1]\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor
\]

再把莫比乌斯函数套进去:

\[\sum_{x=1}^n \sum_{y=1}^m\sum_{d|gcd(x,y)}\mu(d)\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor
\]

再次根据常见套路,我们改为枚举 \(d\) :

\[\sum_{d=1}^n\mu(d)\sum_{x=1}^n\sum_{y=1}^m[d|x\&\&d|y]\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor
\]

那么又一次根据常见套路,继续减少枚举次数:

\[\sum_{d=1}^n\mu(d)\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{y=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{n}{xd}\rfloor\lfloor\frac{m}{yd}\rfloor
\]

为了更直观地体现,我们需要根据乘法分配率将式子分成两个部分分别计算,然后乘在一起:

\[\sum_{d=1}^n\mu(d)(\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{n}{xd}\rfloor)(\sum_{y=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{m}{yd}\rfloor)
\]

那么我们就这样得到了最终的式子。

接下来,我们只需要正常整除分块就好了!因为对于式子中的 \(\lfloor\frac{n}{xd}\rfloor\) 来讲呢,我们可以拆成 \((n/d)/x\) ,所以就可以预处理一个函数 \(f(x)=\sum_{i=1}^x \lfloor\frac{x}{i}\rfloor\) ,则:

\[ans=\sum_{d=1}^n\mu(d)*f(\lfloor\frac{n}{d}\rfloor)*f(\lfloor\frac{m}{d}\rfloor)
\]

再预处理一下 \(\mu\) 函数的前缀和,那么一切都只是整除分块而已,分块后面两个函数的值即可,吸溜。

Code

#include <cstdio>
#include <iostream>
using namespace std;
int T, n, m;
int cntp, pri[50001];
long long ans, mu[50001], f[50001];
bool vis[50001];
void init() {
mu[1] = 1;
for (int i = 2; i <= 50000; i++) {
if (!vis[i]) pri[++cntp] = i, mu[i] = -1;
for (int j = 1; j <= cntp && pri[j] * i <= 50000; j++) {
vis[pri[j] * i] = true;
if (!(i % pri[j])) break;
mu[pri[j] * i] = -mu[i]; //求莫比乌斯函数
}
}
for (int i = 1; i <= 50000; i++) mu[i] += mu[i - 1]; //前缀和
for (int i = 1; i <= 50000; i++)
for (int l = 1, r; l <= i; l = r + 1) {
r = i / (i / l);
f[i] += 1ll * (r - l + 1) * (i / l);
} //求 f 函数
}
int main() {
freopen("3327.in", "r", stdin);
freopen("3327.out", "w", stdout);
cin >> T;
init();
while (T--) {
scanf("%d%d", &n, &m);
if (n > m) swap(n, m);
ans = 0;
for (int l = 1, r; l <= n; l = r + 1) {
r = min(n / (n / l), m / (m / l));
ans +=
1ll * (mu[r] - mu[l - 1]) * f[n / l] * f[m / l]; //整除分块计算答案
}
printf("%lld\n", ans);
}
}

【SDOI 2015】约数个数和的更多相关文章

  1. Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和

    下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...

  2. [SDOI 2015]约数个数和

    Description  设d(x)为x的约数个数,给定N.M,求 $\sum^N_{i=1}\sum^M_{j=1}d(ij)$ Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试 ...

  3. SDOI 2015 约束个数和

    Description: 共\(T \le 5 \times 10^4\)组询问, 每组询问给定\(n\)和\(m\), 请你求出 \[ \sum_{i = 1}^n \sum_{j = 1}^m \ ...

  4. 「BZOJ 3994」「SDOI 2015」约数个数和「莫比乌斯反演」

    题意 设\(d(x)\)为\(x\)的约数个数,求\(\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)\). 题解 首先证个公式: \[d(ij) = \sum_{x|i}\sum_ ...

  5. BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]

    2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...

  6. [BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT)

    [BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT) 题面 小C有一个集合S,里面的元素都是小于质数M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数 ...

  7. 【BZOJ】3994: [SDOI2015]约数个数和

    题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...

  8. hdu1492(约数个数定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1492 这里先讲一下约数个数定理: 对于正整数x,将其质因分解为 x = pow(p1, a) * po ...

  9. UVA294DIvisors(唯一分解定理+约数个数)

    题目链接 题意:输入两个整数L,U(L <= U <= 1000000000, u - l <= 10000),统计区间[L,U]的整数中哪一个的正约数最多,多个输出最小的那个 本来 ...

随机推荐

  1. 从头实现一个WPF条形图

    时间如流水,只能流去不流回! 点赞再看,养成习惯,这是您给我创作的动力! 本文 Dotnet9 https://dotnet9.com 已收录,站长乐于分享dotnet相关技术,比如Winform.W ...

  2. 用故事说透 HTTPS

    本文来自素燕公众号,原文地址:用故事说透 HTTPS 故事中的主演:小华今年上大一,这是她第一次离开父母,独自一人到北京上学.今天妈妈的生日,想了想要给妈妈一个祝福,便给妈妈发了条消息:妈妈收到这条消 ...

  3. WPF引用WinForm控件

    前言:在WPF开发当中由于DataGrid控件实现业务未达到非常理想的效果,我决定使用WinForm中的DataGridView来实现业务. 在XAML中加入以下命名空间: xmlns:wf=&quo ...

  4. .Net Core控制台&EFCore连接Mysql

    在用惯了Asp.Net Core提供的基架后,反过来想一想,貌似忘记了控制台如何去连接数据库了,因此,写一篇文章来借此巩固下并以后再来回顾时,加快步骤. 1.新建一个.Net Core控制台,然后安装 ...

  5. C#的语法----程序结构(3)

    练习2 对于学员成绩的评测  成绩>=90:A  成绩>=80&&成绩<90:B  成绩>=70&&成绩<80:C  成绩>=60& ...

  6. 微信 电脑版 HOOK(WeChat PC Hook)- 技能点

    CE 扫描内存数据OD 动态分析代码IDA 静态分析代码汇编 阅读OD和IDA的代码 编写inline hookC/C++ 编写dll 编写主程序逻辑MFC 编写主程序界面 源码: https://g ...

  7. Cortex-M7,A8,A9,A15与ADI的BlackFin以及SHARC的DSP性能PK

    说明:1.通过此贴让我们对M4和M7的DSP性能有个全面的认识.2.测试数据来源于DSP Concepts,对于这家公司的名字,大家可能比较陌生.我们现在用的CMSIS-DSP软件就是由ARM委托这家 ...

  8. 【译】如何使用docker-compose安装anchore

    如何使用docker-compose安装anchore,本篇译自Install with Docker Compose. Preface 在本节中,您将学习如何启动和运行独立的Anchore引擎安装, ...

  9. golang协程同步的几种方法

    目录 golang协程同步的几种方法 协程概念简要理解 为什么要做同步 协程的几种同步方法 Mutex channel WaitGroup golang协程同步的几种方法 本文简要介绍下go中协程的几 ...

  10. How to: Create a Business Model in the XPO Data Model Designer 如何:在 XPO 数据模型设计器中创建业务模型

    This topic provides step-by-step instructions on how to use the XPO Data Model Designer in XAF appli ...