题意:就是求石子归并。

题解:当范围在100左右是可以之间简单的区间dp,如果范围在1000左右就要考虑用平行四边形优化。

就是多加一个p[i][j]表示在i到j内的取最优解的位置k,注意能使用平行四边形优化的条件:

1.证明w满足四边形不等式,这里w是m的附属量,形如m[i,j]=opt{m[i,k]+m[k,j]+w[i,j]},此时大多要先证明w满足条件才能进一步证明m满足条件

2.证明m满足四边形不等式

3.证明s[i,j-1]≤s[i,j]≤s[i+1,j]

。如果在10000左右时就要用GarsiaWachs算法

 

推荐一个博客http://www.cnblogs.com/jiu0821/p/4493497.html

有详细解释。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int inf = 0X3f3f3f3f;
long long dp[200][200] , a[200] , sum[200];
int main() {
int n;
scanf("%d" , &n);
for(int i = 1 ; i <= n ; i++) {
scanf("%lld" , &a[i]);
}
memset(dp , inf , sizeof(dp));
for(int i = 1 ; i <= n ; i++) {
dp[i][i] = 0;
}
sum[0] = 0;
for(int i = 1 ; i <= n ; i++) {
sum[i] = sum[i - 1] + a[i];
}
for(int l = 1 ; l < n ; l++) {
for(int i = 1 ; i <= n && i + l <= n ; i++) {
int j = l + i;
for(int k = i ; k < j ; k++) {
dp[i][j] = min(dp[i][k] + dp[k + 1][j] + sum[j] - sum[i - 1] , dp[i][j]);
}
}
}
printf("%lld\n" , dp[1][n]);
return 0;
}
////////////
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int inf = 0X3f3f3f3f;
long long dp[2010][2010] , a[2010] , sum[2010] ;
int p[2010][2010];
int main() {
int n;
scanf("%d" , &n);
for(int i = 1 ; i <= n ; i++) {
scanf("%lld" , &a[i]);
}
memset(dp , inf , sizeof(dp));
for(int i = 1 ; i <= 2 * n ; i++) {
dp[i][i] = 0;
p[i][i] = i;
}
sum[0] = 0;
for(int i = n + 1 ; i <= 2 * n ; i++) {
a[i] = a[i - n];
}
for(int i = 1 ; i <= 2 * n ; i++) {
sum[i] = sum[i - 1] + a[i];
}
for(int l = 1 ; l < n ; l++) {
for(int i = 1 ; i <= 2 * n && i + l <= 2 * n ; i++) {
int j = l + i;
for(int k = p[i][j - 1] ; k <= p[i + 1][j] ; k++) {
if(dp[i][j] > dp[i][k] + dp[k + 1][j] + sum[j] - sum[i - 1]) {
dp[i][j] = dp[i][k] + dp[k + 1][j] + sum[j] - sum[i - 1];
p[i][j] = k;
}
}
}
}
long long MIN = dp[1][n];
for(int i = 2 ; i <= n ; i++) {
MIN = min(MIN , dp[i][i + n - 1]);
}
printf("%lld\n" , MIN);
return 0;
}
////////////////
#include <iostream>
#include <cstring>
using namespace std;
#define LL long long
const int MAXN = 50005;
int n, num;
LL ans;
int dp[MAXN];
void combine(int now) {
int j;
int temp = dp[now - 1] + dp[now];
ans += (LL)temp;
for(int i = now; i < num - 1; i++) dp[i] = dp[i + 1];
num--;
for(j = now - 1; j > 0 && dp[j - 1] < temp; j--) dp[j] = dp[j - 1];
dp[j] = temp;
while(j >= 2 && dp[j - 2] <= dp[j]) {
int d = num - j;
combine(j - 1);
j = num - d;
}
}
int main()
{
scanf("%d", &n);
for(int i = 0; i < n; i++) scanf("%d", &dp[i]);
num = 1, ans = 0;
for(int i = 1; i < n; i++)
{
dp[num++] = dp[i];
while(num>=3 && dp[num-3]<=dp[num-1]) combine(num - 2);
}
while(num > 1) combine(num - 1);
printf("%lld\n", ans);
return 0;
}

51 nod 石子归并 + v2 + v3(区间dp,区间dp+平行四边形优化,GarsiaWachs算法)的更多相关文章

  1. 51nod 1022 石子归并 V2 —— DP四边形不等式优化

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022 1022 石子归并 V2  基准时间限制:1 秒 空间限 ...

  2. [51nod 1022] 石子归并v2 [dp+四边形不等式优化]

    题面: 传送门 思路: 加强版的石子归并,现在朴素的区间dp无法解决问题了 首先我们破环成链,复制一条一样的链并粘贴到原来的链后面,变成一个2n长度的序列,在它上面dp,效率O(8n^3) 显然是过不 ...

  3. 51nod1022 石子归并 V2

    证明w满足四边形不等式,这里w是m的附属量,形如m[i,j]=opt{m[i,k]+m[k,j]+w[i,j]},此时大多要先证明w满足条件才能进一步证明m满足条件证明m满足四边形不等式证明s[i,j ...

  4. 石子合并(直线版+环形版)&(朴素写法+四边形优化+GarsiaWachs算法)

    石子合并-直线版 (点击此处查看题目) 朴素写法 最简单常见的写法就是通过枚举分割点,求出每个区间合并的最小花费,从而得到整个区间的最小花费,时间复杂度为O(n^3),核心代码如下: ; i < ...

  5. 51Nod 1022 石子归并 V2(区间DP+四边形优化)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022 题目大意: N堆石子摆成一个环.现要将石子有次序地合并成 ...

  6. 51 Nod 1068 Bash游戏v3

    1068 Bash游戏 V3  题目来源: Ural 1180 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 有一堆石子共有N个.A B两个人轮流 ...

  7. 51 Nod Bash 游戏v2

    1067 Bash游戏 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  取消关注 有一堆石子共有N个.A B两个人轮流拿,A先拿.每次只能拿1,3 ...

  8. 51 Nod 1500 苹果曼和树(树形dp)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1500 思路: 树形dp. 我们考虑当前结点 i ,对于结点 i ,它可以 ...

  9. 51 Nod 1006 最长公共子序列(LCS & DP)

    原题链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1006 题目分析: 首先先知道LCS问题,这有两种: Long ...

随机推荐

  1. 实用小工具推荐 OpenWrite

    [实用小工具推荐]给技术同学们推荐一款比较好用的工具,可以实现一稿多发,主流的技术渠道基本涵盖了:https://www.openwrite.cn/ 因为工作的关系,认识了很多做技术公众号的小伙伴,同 ...

  2. tensorflow学习笔记——常见概念的整理

    TensorFlow的名字中已经说明了它最重要的两个概念——Tensor和Flow.Tensor就是张量,张量这个概念在数学或者物理学中可以有不同的解释,但是这里我们不强调它本身的含义.在Tensor ...

  3. js 实现 联动

    使用jQuery实现联动效果 应用场景:收货地址 1.准备三个下拉框 <select class="changeArea" id='province'> <opt ...

  4. 利用模板生成html页面(NVelocity)

    公司的网站需要有些新闻,每次的新闻格式都是一样的,而不想每次都查询操作,所以想把这些新闻的页面保存成静态的html,之后搜索了下就找到了这个模板引擎,当然其他的模板引擎可以的,例如:Razor,自己写 ...

  5. 昏睡了8年的我带着第一个微信小程序今年醒了

    工作8年之久的我今年算是彻底长进了,以前是知道自己的水平不咋地,但是没什么行动,理由是3年抱2娃,需要照顾孩子. 去年年底偶然一次看技术贴的时候,看到了博客园这个平台,看了很多大牛们的经历,也知道公司 ...

  6. Storm初识(1)

    在Storm集群中,有两类节点:主节点 master node 和工作节点 worker nodes. 主节点运行着一个叫做Nimbus的守护进程.这个守护进程负责在集群中分发代码,为工作节点分配任务 ...

  7. xpath爬虫实例,爬取图片网站百度盘地址和提取码

    某套图网站,套图以封面形式展现在页面,需要依次点击套图,点击广告盘链接,最后到达百度网盘展示页面. 这一过程通过爬虫来实现,收集百度网盘地址和提取码,采用xpath爬虫技术 1.首先分析图片列表页,该 ...

  8. 100天搞定机器学习|Day16 通过内核技巧实现SVM

    前情回顾 机器学习100天|Day1数据预处理100天搞定机器学习|Day2简单线性回归分析100天搞定机器学习|Day3多元线性回归100天搞定机器学习|Day4-6 逻辑回归100天搞定机器学习| ...

  9. python 闭包,装饰器,random,os,sys,shutil,shelve,ConfigParser,hashlib模块

    闭包 def make_arerage(): l1 = [] def average(price): l1.append(price) total = sum(l1) return total/len ...

  10. ggplot2 |legend参数设置,图形精雕细琢

    本文首发于微信公众号“生信补给站”,https://mp.weixin.qq.com/s/A5nqo6qnlt_5kF3_GIrjIA 学习了ggplot2|详解八大基本绘图要素后,就可以根据自己的需 ...