R期望
斐波那契数列--九九乘法表
# 1、 打印斐波那契数列
kl<-c(1,1)
for (i in 1:8){
kl[i+2]<-kl[i]+kl[i+1]
}
kl # 10、 打印九九乘法表
# R 输出函数
for (i in 1:9){
for (j in 1:i){
cat(i,"*",j,"=",i*j," ")
}
cat('\n')
}
R语言的输出:cat() print() paste() 输入:scan() readline()
期望值
#一个随机事件的期望值可以看做是某种加权平均值,
#它是该事件每一个可能结果乘以权值后所得结果的总和,
#权值对应每一个可能结果出现的概率
掷一个色子
#掷一个色子
#所有结果 1 2 3 4 5 6
#所对概率 1/6 1/6 1/6 1/6 1/6 1/6
E_roll<-1*1/6+2*1/6+3*1/6+4*1/6+5*1/6+6*1/6
E_roll
# 求均值
mean(1:6)
掷两个色子
#掷两个色子
#所有结果 36
#所对概率 1/36 #列出n个向量元素的所有组合
sz<-1:6
rolls<-expand.grid(sz,sz)
#添加var1的概率
rolls$prob1<-1/6
#添加var2的概率
rolls$prob2<-1/6
rolls
#添加总概率值
rolls$prob<-rolls$prob1*rolls$prob2
#添加value值
rolls$value<-rolls$Var1+rolls$Var2
#计算期望值
E_ROLLS<-sum(rolls$prob*rolls$value)
E_ROLLS
掷两个色子(作弊)
#1 2 3 4 5的概率为1/8
#6的概率为3/8
rolls1<-expand.grid(sz,sz)
#添加var1的概率
# 1/8 5次,3/8 1次
rolls1$prob1<-rep(c(1/8,3/8),c(5,1))
#添加var2的概率
rolls1$prob2<-rep(c(1/8,1/8,1/8,1/8,1/8,3/8),each=6)
#添加总概率
rolls1$prob<-rolls1$prob1*rolls1$prob2
#添加value值
rolls1$value<-rolls1$Var1+rolls1$Var2
#计算期望值
E_ROLLS1<-sum(rolls1$prob*rolls1$value)
E_ROLLS1
构建查找表和上面一样结果
#构建查找表
prob<-c(""=1/8,""=1/8,""=1/8,
""=1/8,""=1/8,""=3/8)
prob[1]
# 一次看多个值
prob[c(1,2,3,4,5,6)]
unname(prob[c(1,2,3,4,5,1,2,3,4,5,6)])
#添加var1的概率
rolls1$prob1<-prob[rolls1$Var1]
#添加var2的概率
rolls1$prob2<-prob[rolls1$Var2]
计算tiger机的期望值
7*7*7
wheel<-c("DD","","BBB","BB","B","C","")
combos<-expand.grid(wheel,wheel,wheel,
stringsAsFactors = F)
str(combos)
#构建查找表
prob <- c("DD"=0.03,""=0.03,"BBB"=0.06,
"BB"=0.1,"B"=0.25,"C"=0.01,""=0.52)
prob["DD"]
prob["C"]
#添加var1的概率 # prob[combos$Var1] 每个值对应的概率
combos$prob1<-unname(prob[combos$Var1])
#添加var2的概率
combos$prob2<-unname(prob[combos$Var2])
#添加var3的概率
combos$prob3<-unname(prob[combos$Var3])
#添加总概率
combos$prob<-combos$prob1*combos$prob2*combos$prob3
head(combos)
score(c("DD","DD","DD"))
#添加一列value
combos$value<-NA
combos[1,1]
combos[1,2]
combos[1,3]
c(combos[1,1],combos[1,2],combos[1,3])
score(c(combos[1,1],combos[1,2],combos[1,3]))
combos[1,"value"]<-score(c(combos[1,1],combos[1,2],combos[1,3]))
nrow(combos)
for (i in 1:343) {
combos[i,"value"]<-score(c(combos[i,1],combos[i,2],combos[i,3]))
}
head(combos)
tail(combos)
#计算期望值
E<-sum(combos$prob*combos$value)
E #验证期望值
sum(replicate(10,play()))
sum(replicate(100,play()))
sum(replicate(1000,play()))
sum(replicate(10000,play()))
R连接数据库
install.packages("RMySQL")
library(RMySQL)
#构造连接
conn<-dbConnect(MySQL(),user="root",
password="",dbname="db1")
lizi<-data.frame(id=1:5,
type=c("A","A","B","B","C"),
score=7:11,
stringsAsFactors = F)
lizi
#把表写入数据库
dbWriteTable(conn,"suibian",lizi)
#关闭数据库
dbDisconnect(conn)
library(ggplot2)
data("diamonds",package = "ggplot2")
str(diamonds)
dbWriteTable(conn,"diamonds",diamonds,row.names=F)
Data Frame一般被翻译为数据框,感觉就像是R中的表,由行和列组成
cbind: 根据列进行合并,即叠加所有列,m列的矩阵与n列的矩阵cbind()最后变成m+n列,合并前提:cbind(a, c)中矩阵a、c的行数必需相符 rbind: 根据行进行合并,就是行的叠加,m行的矩阵与n行的矩阵rbind()最后变成m+n行,合并前提:rbind(a, c)中矩阵a、c的列数必需相符
#定义资料集
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
s1 = pd.Series([1,2,3,4], index=['a','b','c','d']) #将df2合并到df1的下面,以及重置index,并打印出结果
res = df1.append(df2, ignore_index=True)
print(res)
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
5 1.0 1.0 1.0 1.0
#合并多个df,将df2与df3合并至df1的下面,以及重置index,并打印出结果
res = df1.append([df2, df3], ignore_index=True)
作业:构造6个数据框,每个数据框分别有三个变量,
#追加数据:append
#作业:构造6个数据框,每个数据框分别有三个变量,
#id、type、score
#id:是0-9,10-19,20-29……
#type:"A","B","C"……
#score:长度为10的随机数
#把这6个数据框写到一张表里,表名:pro install.packages("RMySQL")
library(RMySQL)
#构造连接
conn<-dbConnect(MySQL(),user="root",
password="",dbname="db1") a1<-data.frame(id=0:9,type=LETTERS[1:10],score=rnorm(10))
a2<-data.frame(id=10:19,type=LETTERS[1:10],score=rnorm(10))
a3<-data.frame(id=20:29,type=LETTERS[1:10],score=rnorm(10))
a4<-data.frame(id=30:39,type=LETTERS[1:10],score=rnorm(10))
a5<-data.frame(id=40:49,type=LETTERS[1:10],score=rnorm(10))
a6<-data.frame(id=50:59,type=LETTERS[1:10],score=rnorm(10))
s<-rbind(a1,a2,a3,a4,a5,a6) #把表写入数据库
dbWriteTable(conn,"pro",s)
#关闭数据库
dbDisconnect(conn)
-----------
1122
#生成随机数
rnorm(10) #查看数据库中有没有一张特定的表
dbExistsTable(conn,"diamonds") #列出当前的数据库中有哪些表
dbListTables(conn) #列出表中的字段
dbListFields(conn,"diamonds") #读取表的数据
db_df<-dbReadTable(conn,"course")
db_df
提取数据到R里
#提取数据到R里
dbGetQuery() #查看数据集的摘要统计量
summary(diamonds) #1.查询cut切工的类别
dbGetQuery(conn,"select distinct cut from diamonds") #2.查询克拉、价格、大小(size),size用x*y*z来表示
db_diamonds<-dbGetQuery(conn,"select carat,price,x*y*z as size from diamonds")
head(db_diamonds) #3.查询克拉、切工、颜色、价格,切工是Good,颜色是E
good_e_diamonds<-dbGetQuery(conn,"select carat,cut,color,price from diamonds where cut='Good' and color='E'")
head(good_e_diamonds)
111
R期望的更多相关文章
- Maximum Random Walk(概率dp)
题意: 走n步,给出每步向左走概率l,向右走概率r,留在原地的概率 1-l-r,求能达到的最远右边距离的期望. 分析: 开始按期望逆求的方式分析,但让求的就是右边界没法退,懵了一会,既然逆着不能求,就 ...
- Scyther-Semantics and verification of Security Protocol
1 .本书前一节主要是介作者自己的生平经历(读完感觉作者是个神童),目标明确作者13岁代码已经写的很溜了.自己也开了网络公司,但是后面又专注于自己的计算机基础理论,修了哲学的博士学位(不得不说很多专业 ...
- CF963E Circles of Waiting
Circles of Waiting 求一个整点四连通随机游⾛,离原点距离超过R期望步数.R≤50. 带状矩阵法 本质上就是网格图的随机游走. \[ E_x=\sum_y P_{x,y}E_y+1 \ ...
- [原]CentOS7安装Rancher2.1并部署kubernetes (二)---部署kubernetes
################## Rancher v2.1.7 + Kubernetes 1.13.4 ################ ##################### ...
- 利用python进行数据分析2_数据采集与操作
txt_filename = './files/python_baidu.txt' # 打开文件 file_obj = open(txt_filename, 'r', encoding='utf-8' ...
- Django项目:CRM(客户关系管理系统)--81--71PerfectCRM实现CRM项目首页
{#portal.html#} {## ————————46PerfectCRM实现登陆后页面才能访问————————#} {#{% extends 'king_admin/table_index.h ...
- 神经网络模型及R代码实现
神经网络基本原理 一.神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias ).则神 ...
- 用R语言的quantreg包进行分位数回归
什么是分位数回归 分位数回归(Quantile Regression)是计量经济学的研究前沿方向之一,它利用解释变量的多个分位数(例如四分位.十分位.百分位等)来得到被解释变量的条件分布的相应的分位数 ...
- UVA&&POJ离散概率与数学期望入门练习[4]
POJ3869 Headshot 题意:给出左轮手枪的子弹序列,打了一枪没子弹,要使下一枪也没子弹概率最大应该rotate还是shoot 条件概率,|00|/(|00|+|01|)和|0|/n谁大的问 ...
随机推荐
- 第三方OAuth授权登录,QQ、微信(WeChat)、微博、GitHub、码云(Gitee)、淘宝(天猫)、微软(Microsoft )、钉钉、谷歌(Google)、支付宝(AliPay)、StackOverflow
Netnr.Login 第三方OAuth授权登录 支持第三方登录 三方 参考文档 参考文档 参考文档 参考文档 参考文档 参考文档 参考文档 参考文档 参考文档 参考文档 参考文档 参考文档 安装 ( ...
- Vue 02
目录 表单指令v-model 条件指令v-if 循环指令v-for 分隔符delimiters 过滤器filters 计算属性computed 监听属性watch 前端数据库 表单指令v-model ...
- 利用用阿里云API实现DDNS
前言 之前动态域名解析是用的是腾达路由器上集成的第三方动态解析服务花生壳,解析费用一年40元.后来觉得域名前缀不好,想换掉,花生壳需要重新购买新的域名解析费用,增加1条或者2条动态解析无所谓,万一以后 ...
- PAT1057 Stack(树状数组+倍增)
目录 题目大意 题目分析 题目大意 要求维护一个栈,提供压栈.弹栈以及求栈内中位数的操作(当栈内元素\(n\)为偶数时,只是求第\(n/2\)个元素而非中间两数的平均值).最多操作100000次,压栈 ...
- 面试题:为什么客户端最后还要等待2MSL
面试题: 为什么客户端最后还要等待2MSL MSL(Maximum Segment Lifetime),TCP允许不同的实现可以设置不同的MSL值. 保证客户端发送的最后一个ACK报文能够到达服务器, ...
- 2016/10/21 java中的参数传方式
参考:http://blog.sina.com.cn/s/blog_59ca2c2a0100qhjx.html http://www.cnblogs.com/caiyao/p/4964176.html
- 【nginx+keepalived】nginx+keepalived搭建高可用
一.结构及环境 1.1 环境介绍 操作系统:centos7 nginx+keepalived:106.53.73.200 master nginx+keepalived:182.254.184.102 ...
- Nginx配置实例-动静分离实例:搭建静态资源服务器
场景 Nginx入门简介和反向代理.负载均衡.动静分离理解: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/102790862 U ...
- Hack the Zico2 VM (CTF Challenge)
下载链接: Download this VM here: https://download.vulnhub.com/zico/zico2.ova 端口扫描: ╰─ nmap -p1-65535 -sV ...
- birt fatal error致命异常错误