决策树(三)决策树与Jupyter小部件的交互式可视化
简介
决策树是广泛用于分类和回归任务的监督模型。 在本文中,我们将讨论决策树分类器以及如何动态可视化它们。 这些分类器在训练数据上构建一系列简单的if / else规则,通过它们预测目标值。
在本演示中,我们将使用sklearn_wine数据集,使用sklearn export_graphviz函数,我们可以在Jupyter中显示树。
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from sklearn import tree
from sklearn.datasets import load_wine
from IPython.display import SVG
from graphviz import Source
from IPython.display import display
# load dataset
data = load_wine() # feature matrix
X = data.data # target vector
y = data.target # class labels
labels = data.feature_names # print dataset description
print(data.DESCR)
estimator = DecisionTreeClassifier()
estimator.fit(X, y) graph = Source(tree.export_graphviz(estimator, out_file=None
, feature_names=labels, class_names=['', '', '']
, filled = True))
display(SVG(graph.pipe(format='svg')))
在树形图中,每个节点包含分割数据的条件(if / else规则)以及节点的一系列其他度量。基尼是指基尼杂质,它是节点杂质的量度,即节点内样品的均匀程度。我们说当一个节点的所有样本属于同一个类时它是纯粹的。在这种情况下,不需要进一步拆分,这个节点称为叶子。 Samples是节点中的实例数,而value数组显示每个类的这些实例的分布。在底部,我们看到节点的多数类。当export_graphviz的填充选项设置为True时,每个节点将根据多数类进行着色。
虽然易于理解,但通过构建复杂模型,决策树往往会过度拟合数据。过度拟合的模型很可能不会在“看不见的”数据中很好地概括。防止过度拟合的两种主要方法是修剪前和修剪后。预修剪意味着在创建之前限制树的深度,而后修剪是在树构建之后移除非信息节点。
Sklearn学习决策树分类器仅实现预修剪。可以通过若干参数来控制预修剪,例如树的最大深度,节点保持分裂所需的最小样本数以及叶所需的最小实例数。下面,我们在相同的数据上绘制决策树,这次设置max_depth = 3。
这个模型不太深,因此比我们最初训练和绘制的模型简单。
除了预修剪参数之外,决策树还有一系列其他参数,我们在构建分类模型时尝试优化这些参数。 我们通常通过查看准确度指标来评估这些参数的影响。 为了掌握参数的变化如何影响树的结构,我们可以再次在每个阶段可视化树。 我们可以使用Jupyter Widgets(ipywidgets)来构建我们树的交互式绘图,而不是每次进行更改时都绘制树。
Jupyter小部件是交互式元素,允许我们在笔记本中呈现控件。 通过pip和conda安装ipywidgets有两种选择。
用pip安装
pip install ipywidgets
jupyter nbextension enable --py widgetsnbextension
用conda安装
conda install -c conda-forge ipywidgets
对于此应用程序,我们将使用交互式功能。 首先,我们定义一个训练和绘制决策树的函数。 然后,我们将此函数与针对交互式函数感兴趣的每个参数的一组值一起传递。 后者返回我们用display显示的Widget实例。
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from sklearn import tree
from sklearn.datasets import load_wine
from IPython.display import SVG
from graphviz import Source
from IPython.display import display
from ipywidgets import interactive
# load dataset
data = load_wine()
# feature matrix
X = data.data
# target vector
y = data.target
# class labels
labels = data.feature_names
def plot_tree(crit, split, depth, min_split, min_leaf=0.2):
estimator = DecisionTreeClassifier(random_state = 0
, criterion = crit
, splitter = split
, max_depth = depth
, min_samples_split=min_split
, min_samples_leaf=min_leaf)
estimator.fit(X, y)
graph = Source(tree.export_graphviz(estimator
, out_file=None
, feature_names=labels
, class_names=['', '', '']
, filled = True)) display(SVG(graph.pipe(format='svg')))
return estimator
inter=interactive(plot_tree
, crit = ["gini", "entropy"]
, split = ["best", "random"]
, depth=[1,2,3,4]
, min_split=(0.1,1)
, min_leaf=(0.1,0.5))
display(inter)
在此示例中,我们公开以下参数:
- criterion:衡量节点分裂质量的标准
- splitter:每个节点的拆分策略
- max_depth:树的最大深度
- min_samples_split:节点中所需的最小实例数
- min_samples_leaf:叶节点上所需的最小实例数
最后两个参数可以设置为整数或浮点数。 浮点数被解释为实例总数的百分比。 有关参数的更多详细信息,请阅读sklearn类文档。
决策树(三)决策树与Jupyter小部件的交互式可视化的更多相关文章
- Android 之窗口小部件详解(三) 部分转载
原文地址:http://blog.csdn.net/iefreer/article/details/4626274. (一) 应用程序窗口小部件App Widgets 应用程序窗口小部件(Widget ...
- 桌面小部件Wight父类AppWidgetProvider的三个方法
onUpdate()这个方法会在每次更新App Widget的时候调用,数据更新的逻辑都写在这个方法里边.而且要注意的是:在用户添加小部件的时候,会首先调用这个方法,应该在这个方法里进行初始化操作,比 ...
- ArcGIS API For JavaScript 开发(三)使用小部件设计页面框架
其实上一个的鹰眼.比例尺.图例等都是小部件:这篇文章主要是页面布局设计,dojo提供了非常多的小部件,从功能的角度可以分为3大类:表单小部件.布局小部件和应用小部件. 表单小部件于HTML中的表单部件 ...
- Android开发5:应用程序窗口小部件App Widgets的实现
前言 本次主要是实现一个Android应用,实现静态广播.动态广播两种改变 widget内容的方法,即在上篇博文中实验的基础上进行修改,所以此次实验的重点是AppWidget小部件的实现啦~ 首先,我 ...
- 优质Android小部件:索尼滚动相册
虽然骚尼手机卖的不怎么样,但是有些东西还是做的挺好的,工业设计就不用说了,索尼的相册的双指任意缩放功能也是尤其炫酷.其桌面小部件滚动相册我觉得也挺好的,比谷歌原生的相册墙功能好多了,网上搜了一下也没发 ...
- Android 之窗口小部件详解--App Widget
Android 之窗口小部件详解--App Widget 版本号 说明 作者 日期 1.0 添加App Widge介绍和示例 Sky Wang 2013/06/27 1 App ...
- ArcGIS API for JavaScript 4.2学习笔记[19] 搜索小部件——使用更多数据源
上一篇中提到,空间搜索小部件是Search这个类的实例化,作为视图的ui属性添加进去后,视图就会出现搜索框了. 这节的主体代码和上篇几乎一致,区别就在上篇提及的sources属性. 先看看结果: 由于 ...
- 从Hello World说起(Dart)到“几乎所有东西都是Widget”小部件。
import 'package:flutter/material.dart'; void main() => runApp(new MyApp()); class MyApp extends S ...
- Qt Widgets——动作类与小部件菜单项
本文主要涉及以下三个类: QAction ——QWidgetAction QActionGroup QAction可称为动作类,它一般可当作菜单中的项组成菜单,也可作为工具栏上的按钮,它主要由图标.文 ...
随机推荐
- SparkSQL--数据源Parquet的加载和保存
一.通用的load和save操作 对于Spark SQL的DataFrame来说,无论是从什么数据源创建出来的DataFrame,都有一些共同的load和save操作.load操作主要用于加载数据,创 ...
- nyoj 24-素数距离问题 (素数算法)
24-素数距离问题 内存限制:64MB 时间限制:3000ms Special Judge: No accepted:21 submit:71 题目描述: 现在给出你一些数,要求你写出一个程序,输出这 ...
- [FPGA]Verilog实现可自定义的倒计时器(24秒为例)
目录 想说的话... 样例_边沿检测计数器 代码讲解 仿真演示 拓展_自定义倒计时数和倒计时间隔 代码讲解 仿真演示 总结 实例_24秒倒计时器 想说的话... 本次实现的是一个24秒倒计时器,功能顾 ...
- Excel导入数据库(php版)
一.环境说明 Apache+php(PHPExcel)+HTML5+JavaScript(jQuery)+MySQL 二.前端预览 三.Excel表格 四.HTML部分 <p>按照Exce ...
- Asp.Net Core下使用swagger生成api文档
目录 一.前期准备 二.配置Swagger 三.参考 .Net Core中有两个集成NSwag的包,分别为Swashbuckle和NSwag.两者的配置大同小异.这里以NSwag为例. 一.前期准备 ...
- 【计算机网络】你真的了解HTTP(HTTPS)协议的这12个知识点吗
HTTP协议 1. 介绍一下OSI七层参考模型和TCP/IP五层模型 1.1 OSI七层模型 1.2 TCP/IP五层模型 1.3 各层的设备 [各层设备] 1.4 各层对应协议 2. HTTP协议和 ...
- 10分钟学会Python函数基础知识
看完本文大概需要8分钟,看完后,仔细看下代码,认真回一下,函数基本知识就OK了.最好还是把代码敲一下. 一.函数基础 简单地说,一个函数就是一组Python语句的组合,它们可以在程序中运行一次或多次运 ...
- Stream系列(九)Collector方法使用
toMap toList toCollection joining 视频讲解:https://www.bilibili.com/video/av77800638/ EmployeeTestCase.j ...
- 02-tornado学习笔记-环境配置
Ubuntu16.04开发环境 1.ubuntu默认root用户没有激活,激活root用户,就要为root用户创建密码 $sudo passwd root 2.修改主机名 $vi /etc ...
- 前端WEB编辑器最爱——webstrom
欲先善其事,必先利其器,如题.看到网上一篇介绍webstrom的文章,觉得功能确实强大,也知道为什么阿里巴巴的前端传到github上的文件为啥都有一个 .idea 文件,(传说淘宝内部推荐写js用we ...