pyecharts画图总结
pyecharts 画图归纳
将本地文件导入到Pyecharts:
test = open(filename, 'r')
data = test.readlines()
test.close()
如果遇到无法导入包的情况:
sudo pip install pyecharts == 0.1.9.4
再不行:
sudo apt - get install python3 - tk
pip3 install pyecharts
mysql文件导入Pycharm的代码
import pymysql
一页多图
from pyecharts import Page
导入柱状图Bar
from pyecharts import Bar
导入饼图Pie
from pyecharts import Pie
导入折线图Line
from pyecharts import Line
导入雷达图Radar
from pyecharts import Radar
导入散点图Scatter
from pyecharts import Scatter
导入词云图WordCloud
from pyecharts import WordCloud
将mysql的数据导入pycharm
db = pymysql.connect("要连接的主机地址localhost", "用于登录的数据库用户root", "密码strongs", "要连接的数据库名")
cursor = db.cursor()
sql = "select * from 表名"
try:
cursor.execute(sql)
data = cursor.fetchall()
except:
print("Error!")
db.close()
print(data)
x = [x[0] for x in data]
y = [x[1] for x in data]
page = Page()
柱状图-Bar
设置行名
columns = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
设置数据
data1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]
data2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]
设置柱状图的主标题与副标题
bar = Bar("柱状图", "一年的降水量与蒸发量", title_color='red', width=1000)
添加柱状图的数据及配置项
bar.add("图标", 列名, 列高(数据), mark_line=["average"], mark_point=["max", "min"])
bar.add("降水量", columns, data1, mark_line=['max'], mark_point=["max", "min"], is_convert=False, area_color='yellow')
bar.add("蒸发量", columns, data2, mark_line=["average"], mark_point=["max", "min"], is_convert=False)
打印输出图表的所有配置项
bar.show_config()
生成本地文件(默认为.html文件)
bar.render('./bar.html')
page.add(bar)
饼图-Pie
设置主标题与副标题,标题设置居中,设置宽度为900
pie = Pie("饼状图", "一年的降水量与蒸发量", title_pos='center', width=900)
加入数据,设置坐标位置为【25,50】,上方的colums选项取消显示
pie.add("降水量", columns, data1, center=[25, 50], is_legend_show=True)
加入数据,设置坐标位置为【75,50】,上方的colums选项取消显示,显示label标签
pie.add("蒸发量", columns, data2, center=[75, 50], is_legend_show=False, is_label_show=True)
pie.show_config()
保存图表
pie.render('./pie.html')
page.add(pie)
折线图-Line
line = Line("折线图", "一年的降水量与蒸发量")
is_label_show是设置上方数据是否显示
line.add("降水量", columns, data1, is_label_show=True)
line.add("蒸发量", columns, data2, is_label_show=True)
line.render('./line.html')
page.add(line)
雷达图-Radar
radar = Radar("雷达图", "一年的降水量与蒸发量")
由于雷达图传入的数据得为多维数据,所以这里需要做一下处理
radar_data1 = [[2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]]
radar_data2 = [[2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]]
设置column的最大值,为了雷达图更为直观,这里的月份最大值设置有所不同
schema = [
("Jan", 5), ("Feb", 10), ("Mar", 10),
("Apr", 50), ("May", 50), ("Jun", 200),
("Jul", 200), ("Aug", 200), ("Sep", 50),
("Oct", 50), ("Nov", 10), ("Dec", 5)
]
传入坐标
radar.config(schema)
radar.add("降水量", radar_data1)
一般默认为同一种颜色,这里为了便于区分,需要设置item的颜色
radar.add("蒸发量", radar_data2, item_color="#1C86EE")
radar.render('./radar.html')
page.add(radar)
散点图-scatter
scatter = Scatter("散点图", "一年的降水量与蒸发量")
xais_name是设置横坐标名称,这里由于显示问题,还需要将y轴名称与y轴的距离进行设置
scatter.add("降水量与蒸发量的散点分布", data1, data2, xaxis_name="降水量", yaxis_name="蒸发量",
yaxis_name_gap=40)
scatter.render('./scatter.html')
page.add(scatter)
词云图-word_cloud
word_cloud = WordCloud(width=1300, height=620)
name = ['Sam S Club', 'Macys', 'Amy Schumer', 'Jurassic World', 'Charter Communications', 'Chick Fil A',
'Planet Fitness', 'Pitch Perfect', 'Express', 'Home', 'Johnny Depp', 'Lena Dunham', 'Lewis Hamilton', 'KXAN',
'Mary Ellen Mark', 'Farrah Abraham', 'Rita Ora', 'Serena Williams', 'NCAA baseball tournament', 'Point Break']
value = [10000, 6181, 4386, 4055, 2467, 2244, 1898, 1484, 1112, 965, 847, 582, 555, 550, 462, 366, 360, 282, 273, 265]
word_cloud.add("", name, value, word_size_range=[30, 100], shape='diamond')
word_cloud.show_config()
word_cloud.render()
page.add(word_cloud)
page.render('./all-plots.html')
图表布局
from pyecharts import Grid
设置折线图标题位置
line = Line("折线图", "一年的降水量与蒸发量", title_top="45%")
line.add("降水量", columns, data1, is_label_show=True)
line.add("蒸发量", columns, data2, is_label_show=True)
grid = Grid()
设置两个图表的相对位置
grid.add(bar, grid_bottom="60%")
grid.add(line, grid_top="60%")
grid.render()
结合不同类型图表叠加
from pyecharts import Overlap
overlap = Overlap()
bar = Bar("柱状图-折线图合并", "一年的降水量与蒸发量")
bar.add("降水量", columns, data1, mark_point=["max", "min"])
bar.add("蒸发量", columns, data2, mark_point=["max", "min"])
overlap.add(bar)
overlap.add(line)
overlap.render()
pyecharts画图总结的更多相关文章
- pyecharts的使用及总结
包的下载及配置 这个包的相应的配置较多,版本也不兼容,总结一下 预览:pyecharts画图 pip pyecharts pip 各级别地图(6.7个左右) pip jupyter环境 [为了生成pn ...
- ubuntu上pyecharts V1版本环境搭建
1 背景 今天想用pyecharts画图,在新的环境下使用pip安装之后发现,导入pyecharts模块一直失败,报错如下. 图 1 导入pyecharts错误图 请注意:我这里使用的python版本 ...
- 利用pyecharts做地图数据展示
首先, pip install pyecharts 为了地图上的数据能显示完全,加载好需要的城市地理坐标数据. pip install echarts-countries-pypkg pip inst ...
- django使用pyecharts(6)----django加入echarts_增量更新_定长_坐标轴定长
六.Django 前后端分离_定时增量更新图表(坐标轴定长) 1.安装 djangorestframework linux pip3 install djangorestframework windo ...
- django使用pyecharts(5)----django加入echarts_增量更新_定长
五.Django 前后端分离_定时增量更新图表定长数据 1.安装 djangorestframework linux pip3 install djangorestframework windows ...
- django使用pyecharts(4)----django加入echarts_增量更新
四.Django 前后端分离_定时增量更新图表 1.安装 djangorestframework linux pip3 install djangorestframework windows pip ...
- django使用pyecharts(3)----django加入echarts_定时全量更新
三.Django 前后端分离_定时全量更新图表 1.安装 djangorestframework linux pip3 install djangorestframework windows pip ...
- django使用pyecharts(2)----django加入echarts_前后台分离
二.Django 中使用 pyecharts. 前后端分离 1.安装 djangorestframework linux pip3 install djangorestframework window ...
- 数据可视化基础专题(十五):pyecharts 基础(二)flask 框架整合
Flask 前后端分离 Step 1: 新建一个 Flask 项目 $ mkdir pyecharts-flask-demo $ cd pyecharts-flask-demo $ mkdir tem ...
随机推荐
- VMware下载及安装使用方法
一.VMware的介绍: 虚拟机(Virtual Machine)指通过软件模拟的具有完整硬件系统功能的.运行在一个完全隔离环境中的完整计算机系统.DesktopVirtualBox,虚拟系统通过生成 ...
- mysql 忘记登录密码(修改root密码)
1.以管理员身份打开cmd,键入net stop mysql,停止mysql 2.切换到mysql的安装目录下(例:S:\mysql\mysql-8.0.18-winx64\mysql-8.0.18- ...
- 最小生成树——Kruskal与Prim算法
最小生成树——Kruskal与Prim算法 序: 首先: 啥是最小生成树??? 咳咳... 如图: 在一个有n个点的无向连通图中,选取n-1条边使得这个图变成一棵树.这就叫“生成树”.(如下图) 每个 ...
- ef6+mysql的bug
entityFramework6在mysql数据库下,用linq进行排序会出现一个bug. Expression<Func<blog, bool>> expr_filter=p ...
- 高质量iOS博客推荐
https://www.jianshu.com/p/ea9fabdc12ed 原文地址 原作者记录了一些高质量ios博客地址,本文只做收藏使用.
- HashMap 实现原理解析
概要 HashMap 最早出现在 JDK 1.2 中,底层基于散列算法实现.HashMap 允许 null 键和 null 值,在计算哈键的哈希值时,null 键哈希值为 0.HashMap 并不保证 ...
- 【Seleniuem】selenium.common.exceptions.InvalidSelectorException
selenium.common.exceptions.InvalidSelectorException: Message: invalid selector: An invalid or illega ...
- Electron node integration enabled 设置
解决办法 参考博客:https://blog.csdn.net/hwytree/article/details/103167175
- 3年Java开发都知道的Redis数据结构和通用命令
Redis的数据结构 Redis支持多种不同的数据结构,包括5种基础数据结构和几种比较复杂的数据,这些数据结构可以满足不同的应用场景. 五种基础数据结构 String:字符串,是构建其他数据结构的基础 ...
- angular6路由参数的传递与获取
1.访问路由链接:/test/id 路由配置: {path: 'test/:id', component: TestComponent} html传参: <a href="javasc ...