为什么Redis 单线程却能支撑高并发?
作者:Draveness
原文:draveness.me/redis-io-multiplexing
推荐阅读
3. Spring Boot整合JWT实现用户认证(附源码)
最近在看 UNIX 网络编程并研究了一下 Redis 的实现,感觉 Redis 的源代码十分适合阅读和分析,其中 I/O 多路复用(mutiplexing)部分的实现非常干净和优雅,在这里想对这部分的内容进行简单的整理。
几种 I/O 模型
为什么 Redis 中要使用 I/O 多路复用这种技术呢?
首先,Redis 是跑在单线程中的,所有的操作都是按照顺序线性执行的,但是由于读写操作等待用户输入或输出都是阻塞的,所以 I/O 操作在一般情况下往往不能直接返回,这会导致某一文件的 I/O 阻塞导致整个进程无法对其它客户提供服务,而 I/O 多路复用就是为了解决这个问题而出现的。
Blocking I/O
先来看一下传统的阻塞 I/O 模型到底是如何工作的:当使用 read 或者 write 对某一个文件描述符(File Descriptor 以下简称 FD)进行读写时,如果当前 FD 不可读或不可写,整个 Redis 服务就不会对其它的操作作出响应,导致整个服务不可用。
这也就是传统意义上的,也就是我们在编程中使用最多的阻塞模型:
阻塞模型虽然开发中非常常见也非常易于理解,但是由于它会影响其他 FD 对应的服务,所以在需要处理多个客户端任务的时候,往往都不会使用阻塞模型。
I/O 多路复用
虽然还有很多其它的 I/O 模型,但是在这里都不会具体介绍。
阻塞式的 I/O 模型并不能满足这里的需求,我们需要一种效率更高的 I/O 模型来支撑 Redis 的多个客户(redis-cli),这里涉及的就是 I/O 多路复用模型了:
在 I/O 多路复用模型中,最重要的函数调用就是 select,该方法的能够同时监控多个文件描述符的可读可写情况,当其中的某些文件描述符可读或者可写时,select 方法就会返回可读以及可写的文件描述符个数。
关于 select 的具体使用方法,在网络上资料很多,这里就不过多展开介绍了;
与此同时也有其它的 I/O 多路复用函数 epoll/kqueue/evport,它们相比 select 性能更优秀,同时也能支撑更多的服务。
Reactor 设计模式
Redis 服务采用 Reactor 的方式来实现文件事件处理器(每一个网络连接其实都对应一个文件描述符)
文件事件处理器使用 I/O 多路复用模块同时监听多个 FD,当 accept、read、write 和 close 文件事件产生时,文件事件处理器就会回调 FD 绑定的事件处理器。
虽然整个文件事件处理器是在单线程上运行的,但是通过 I/O 多路复用模块的引入,实现了同时对多个 FD 读写的监控,提高了网络通信模型的性能,同时也可以保证整个 Redis 服务实现的简单。
I/O 多路复用模块
I/O 多路复用模块封装了底层的 select、epoll、avport 以及 kqueue 这些 I/O 多路复用函数,为上层提供了相同的接口。
在这里我们简单介绍 Redis 是如何包装 select 和 epoll 的,简要了解该模块的功能,整个 I/O 多路复用模块抹平了不同平台上 I/O 多路复用函数的差异性,提供了相同的接口:
static int aeApiCreate(aeEventLoop *eventLoop)
static int aeApiResize(aeEventLoop *eventLoop, int setsize)
static void aeApiFree(aeEventLoop *eventLoop)
static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask)
static void aeApiDelEvent(aeEventLoop *eventLoop, int fd, int mask)
static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp)
同时,因为各个函数所需要的参数不同,我们在每一个子模块内部通过一个 aeApiState 来存储需要的上下文信息:
// select
typedef struct aeApiState {
fd_set rfds, wfds;
fd_set _rfds, _wfds;
} aeApiState; // epoll
typedef struct aeApiState {
int epfd;
struct epoll_event *events;
} aeApiState;
这些上下文信息会存储在 eventLoop 的 void *state 中,不会暴露到上层,只在当前子模块中使用。
封装 select 函数
select 可以监控 FD 的可读、可写以及出现错误的情况。
在介绍 I/O 多路复用模块如何对 select 函数封装之前,先来看一下 select 函数使用的大致流程:
int fd = /* file descriptor */ fd_set rfds;
FD_ZERO(&rfds);
FD_SET(fd, &rfds) for ( ; ; ) {
select(fd+1, &rfds, NULL, NULL, NULL);
if (FD_ISSET(fd, &rfds)) {
/* file descriptor `fd` becomes readable */
}
}
初始化一个可读的 fd_set 集合,保存需要监控可读性的 FD;
使用 FD_SET 将 fd 加入 rfds;
调用 select 方法监控 rfds 中的 FD 是否可读;
当 select 返回时,检查 FD 的状态并完成对应的操作。
而在 Redis 的 ae_select 文件中代码的组织顺序也是差不多的,首先在 aeApiCreate 函数中初始化 rfds 和 wfds:
static int aeApiCreate(aeEventLoop *eventLoop) {
aeApiState *state = zmalloc(sizeof(aeApiState));
if (!state) return -1;
FD_ZERO(&state->rfds);
FD_ZERO(&state->wfds);
eventLoop->apidata = state;
return 0;
}
而 aeApiAddEvent 和 aeApiDelEvent 会通过 FD_SET 和 FD_CLR 修改 fd_set 中对应 FD 的标志位:
static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) {
aeApiState *state = eventLoop->apidata;
if (mask & AE_READABLE) FD_SET(fd,&state->rfds);
if (mask & AE_WRITABLE) FD_SET(fd,&state->wfds);
return 0;
}
整个 ae_select 子模块中最重要的函数就是 aeApiPoll,它是实际调用 select 函数的部分,其作用就是在 I/O 多路复用函数返回时,将对应的 FD 加入 aeEventLoop 的 fired 数组中,并返回事件的个数:
static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp) {
aeApiState *state = eventLoop->apidata;
int retval, j, numevents = 0; memcpy(&state->_rfds,&state->rfds,sizeof(fd_set));
memcpy(&state->_wfds,&state->wfds,sizeof(fd_set)); retval = select(eventLoop->maxfd+1,
&state->_rfds,&state->_wfds,NULL,tvp);
if (retval > 0) {
for (j = 0; j <= eventLoop->maxfd; j++) {
int mask = 0;
aeFileEvent *fe = &eventLoop->events[j]; if (fe->mask == AE_NONE) continue;
if (fe->mask & AE_READABLE && FD_ISSET(j,&state->_rfds))
mask |= AE_READABLE;
if (fe->mask & AE_WRITABLE && FD_ISSET(j,&state->_wfds))
mask |= AE_WRITABLE;
eventLoop->fired[numevents].fd = j;
eventLoop->fired[numevents].mask = mask;
numevents++;
}
}
return numevents;
}
封装 epoll 函数
Redis 对 epoll 的封装其实也是类似的,使用 epoll_create 创建 epoll 中使用的 epfd:
static int aeApiCreate(aeEventLoop *eventLoop) {
aeApiState *state = zmalloc(sizeof(aeApiState)); if (!state) return -1;
state->events = zmalloc(sizeof(struct epoll_event)*eventLoop->setsize);
if (!state->events) {
zfree(state);
return -1;
}
state->epfd = epoll_create(1024); /* 1024 is just a hint for the kernel */
if (state->epfd == -1) {
zfree(state->events);
zfree(state);
return -1;
}
eventLoop->apidata = state;
return 0;
}
在 aeApiAddEvent 中使用 epoll_ctl 向 epfd 中添加需要监控的 FD 以及监听的事件:
static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) {
aeApiState *state = eventLoop->apidata;
struct epoll_event ee = {0}; /* avoid valgrind warning */
/* If the fd was already monitored for some event, we need a MOD
* operation. Otherwise we need an ADD operation. */
int op = eventLoop->events[fd].mask == AE_NONE ?
EPOLL_CTL_ADD : EPOLL_CTL_MOD; ee.events = 0;
mask |= eventLoop->events[fd].mask; /* Merge old events */
if (mask & AE_READABLE) ee.events |= EPOLLIN;
if (mask & AE_WRITABLE) ee.events |= EPOLLOUT;
ee.data.fd = fd;
if (epoll_ctl(state->epfd,op,fd,&ee) == -1) return -1;
return 0;
}
由于 epoll 相比 select 机制略有不同,在 epoll_wait 函数返回时并不需要遍历所有的 FD 查看读写情况;在 epoll_wait 函数返回时会提供一个 epoll_event 数组:
typedef union epoll_data {
void *ptr;
int fd; /* 文件描述符 */
uint32_t u32;
uint64_t u64;
} epoll_data_t; struct epoll_event {
uint32_t events; /* Epoll 事件 */
epoll_data_t data;
};
其中保存了发生的 epoll 事件(EPOLLIN、EPOLLOUT、EPOLLERR 和 EPOLLHUP)以及发生该事件的 FD。
aeApiPoll 函数只需要将 epoll_event 数组中存储的信息加入 eventLoop 的 fired 数组中,将信息传递给上层模块:
static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp) {
aeApiState *state = eventLoop->apidata;
int retval, numevents = 0; retval = epoll_wait(state->epfd,state->events,eventLoop->setsize,
tvp ? (tvp->tv_sec*1000 + tvp->tv_usec/1000) : -1);
if (retval > 0) {
int j; numevents = retval;
for (j = 0; j < numevents; j++) {
int mask = 0;
struct epoll_event *e = state->events+j; if (e->events & EPOLLIN) mask |= AE_READABLE;
if (e->events & EPOLLOUT) mask |= AE_WRITABLE;
if (e->events & EPOLLERR) mask |= AE_WRITABLE;
if (e->events & EPOLLHUP) mask |= AE_WRITABLE;
eventLoop->fired[j].fd = e->data.fd;
eventLoop->fired[j].mask = mask;
}
}
return numevents;
}
子模块的选择
因为 Redis 需要在多个平台上运行,同时为了最大化执行的效率与性能,所以会根据编译平台的不同选择不同的 I/O 多路复用函数作为子模块,提供给上层统一的接口;在 Redis 中,我们通过宏定义的使用,合理的选择不同的子模块:
#ifdef HAVE_EVPORT
#include "ae_evport.c"
#else
#ifdef HAVE_EPOLL
#include "ae_epoll.c"
#else
#ifdef HAVE_KQUEUE
#include "ae_kqueue.c"
#else
#include "ae_select.c"
#endif
#endif
#endif
因为 select 函数是作为 POSIX 标准中的系统调用,在不同版本的操作系统上都会实现,所以将其作为保底方案:
Redis 会优先选择时间复杂度为 $O(1)$
的 I/O 多路复用函数作为底层实现,包括 Solaries 10 中的 evport、Linux 中的 epoll 和 macOS/FreeBSD 中的 kqueue,上述的这些函数都使用了内核内部的结构,并且能够服务几十万的文件描述符。
但是如果当前编译环境没有上述函数,就会选择 select 作为备选方案,由于其在使用时会扫描全部监听的描述符,所以其时间复杂度较差 $O(n)$
,并且只能同时服务 1024 个文件描述符,所以一般并不会以 select 作为第一方案使用。
总结
Redis 对于 I/O 多路复用模块的设计非常简洁,通过宏保证了 I/O 多路复用模块在不同平台上都有着优异的性能,将不同的 I/O 多路复用函数封装成相同的 API 提供给上层使用。
整个模块使 Redis 能以单进程运行的同时服务成千上万个文件描述符,避免了由于多进程应用的引入导致代码实现复杂度的提升,减少了出错的可能性。
参考
http://man7.org/linux/man-pages/man2/select.2.html
https://en.wikipedia.org/wiki/Reactor_pattern
https://people.eecs.berkeley.edu/~sangjin/2012/12/21/epoll-vs-kqueue.html
为什么Redis 单线程却能支撑高并发?的更多相关文章
- 为什么 redis 单线程却能支撑高并发
redis 和 memcached 有什么区别?redis 的线程模型是什么?为什么 redis 单线程却能支撑高并发? 这个是问 redis 的时候,最基本的问题吧,redis 最基本的一个内部原理 ...
- 2.redis 和 memcached 有什么区别?redis 的线程模型是什么?为什么 redis 单线程却能支撑高并发?
作者:中华石杉 面试题 redis 和 memcached 有什么区别?redis 的线程模型是什么?为什么 redis 单线程却能支撑高并发? 面试官心理分析 这个是问 redis 的时候,最基本的 ...
- Redis 单线程却能支撑高并发 - 简书 https://www.jianshu.com/p/2d293482f272
小结: 1.在 I/O 多路复用模型中,最重要的函数调用就是 select,该方法的能够同时监控多个文件描述符的可读可写情况:2.Redis 服务采用 Reactor 的方式来实现文件事件处理器(每一 ...
- redis 和 memcached 有什么区别?redis 的线程模型是什么?为什么 redis 单线程却能支撑高并发?
redis 和 memcached 有啥区别? redis 支持复杂的数据结构 redis 相比 memcached 来说,拥有更多的数据结构,能支持更丰富的数据操作.如果需要缓存能够支持更复杂的结构 ...
- 为什么Redis单线程却能支撑高并发?
作者:Draveness 原文链接:draveness.me/redis-io-multiplexing 最近在看 UNIX 网络编程并研究了一下 Redis 的实现,感觉 Redis 的源代码十分适 ...
- redis和memcached有什么区别?redis的线程模型是什么?为什么单线程的redis比多线程的memcached效率要高得多(为什么redis是单线程的但是还可以支撑高并发)?
1.redis和memcached有什么区别? 这个事儿吧,你可以比较出N多个区别来,但是我还是采取redis作者给出的几个比较吧 1)Redis支持服务器端的数据操作:Redis相比Memcache ...
- 关于Redis的几件小事 | 高并发和高可用
如果你用redis缓存技术的话,肯定要考虑如何用redis来加多台机器,保证redis是高并发的,还有就是如何让Redis保证自己不是挂掉以后就直接死掉了. redis高并发:主从架构,一主多从,一般 ...
- Redis高级功能-1、高并发基本概述
1.可能的问题 要将redis运用到工程项目中,只使用一台redis是万万不能的,原因如下: (1)从结构上,单个redis服务器会发生单点故障,并且一台服务器需要处理所有的请求负载,压力较大. (2 ...
- Nodejs:单线程为什么能支持高并发?
1.Nodejs是一个平台,构建在chrome的V8上(js语言解释器),采用事件驱动.非阻塞模型( c++库:libuv). 参考官方: Node.js is a platform built ...
随机推荐
- vue axios 在 edge 浏览器下的bug
Edge 浏览器的版本: Microsoft Edge 42.17134.1.0Microsoft EdgeHTML 17.17134 当请求为POST 时,转换为 GET,并且始终报 “来自缓存 ...
- SpringBoot+JWT+Shiro+MybatisPlus实现Restful快速开发后端脚手架
一.背景 前后端分离已经成为互联网项目开发标准,它会为以后的大型分布式架构打下基础.SpringBoot使编码配置部署都变得简单,越来越多的互联网公司已经选择SpringBoot作为微服务的入门级微框 ...
- 这可能是最漂亮的Spring事务管理详解
事务概念回顾 什么是事务? 事务是逻辑上的一组操作,要么都执行,要么都不执行. 事物的特性(ACID): 原子性: 事务是最小的执行单位,不允许分割.事务的原子性确保动作要么全部完成,要么完全不起作用 ...
- Elasticsearch索引按月划分以及获取所有索引数据
项目中数据库根据月份水平划分,由于没有用数据库中间件,没办法一下查询所有订单信息,所有用Elasticsearch做订单检索. Elasticsearch索引和数据库分片同步,也是根据月份来建立索引. ...
- idea实战技巧
一.背景 为什么想写这个,因为编码一线更多的是实战,实战中,可能一个快捷键,一个小技巧,就能省很多时间. 本文会持续记录,持续更新. 二.技巧 1.全局替换(带正则) 场景是: 多profile的情况 ...
- Java 添加Word目录的2种方法
目录是一种能够快速.有效地帮助读者了解文档或书籍主要内容的方式.在Word中,插入目录首先需要设置相应段落的大纲级别,根据大纲级别来生成目录表.本文中生成目录分2种情况来进行: 1.文档没有设置大纲级 ...
- Python菜鸟文本处理4种方法
自从认识了python这门语言,所有的事情好像变得容易了,作为小白,逗汁儿今天就为大家总结一下python的文本处理的一些小方法. 话不多说,代码撸起来. python大小写字符互换 在进行大小写互换 ...
- JMeter命令行执行+生成HTML报告
1.为什么用命令行模式 使用GUI方式启动jmeter,运行线程较多的测试时,会造成内存和CPU的大量消耗,导致客户机卡死: 所以一般采用的方式是在GUI模式下调整测试脚本,再用命令行模式执行: 命令 ...
- Hbase数据结构和shell操作
Hbase的数据结构 基本要素:命名空间.表.行.列.单元格,region,时间戳. 1.命名空间:NameSpaces的作用 Table:表,所有的表都是命名空间的成员,即表必属于某个命名空间,如果 ...
- 清新淡雅教育教学工作课件PPT模板
模板来源:http://ppt.dede58.com/jiaoxuekejian/26240.html