MobileNet V2深入理解
转载:https://zhuanlan.zhihu.com/p/33075914 MobileNet V2 论文初读
转载:https://blog.csdn.net/wfei101/article/details/79334659 网络模型压缩和优化:MobileNet V2网络结构理解
转载: https://zhuanlan.zhihu.com/p/50045821 mobilenetv1和mobilenetv2的区别
MobileNetV2: Inverted Residuals and Linear Bottlenecks:连接:https://128.84.21.199/pdf/1801.04381.pdf
MobileNet v1中使用的Depthwise Separable Convolution是模型压缩的一个最为经典的策略,它是通过将跨通道的 卷积换成单通道的
卷积+跨通道的
卷积来达到此目的的。
MobileNet V2主要的改进有两点:
1、Linear Bottlenecks。因为ReLU的在通道数较少的Feature Map上有非常严重信息损失问题,所以去掉了小维度输出层后面的非线性激活层ReLU,保留更多的特征信息,目的是为了保证模型的表达能力。
2、Inverted Residual block。该结构和传统residual block中维度先缩减再扩增正好相反,因此shotcut也就变成了连接的是维度缩减后的feature map。
相同点:
- 都采用 Depth-wise (DW) 卷积搭配 Point-wise (PW) 卷积的方式来提特征。这两个操作合起来也被称为 Depth-wise Separable Convolution,之前在 Xception 中被广泛使用。这么做的好处是理论上可以成倍的减少卷积层的时间复杂度和空间复杂度。由下式可知,因为卷积核的尺寸
通常远小于输出通道数
,因此标准卷积的计算复杂度近似为 DW + PW 组合卷积的
倍。由于Depthwise卷积的每个通道Feature Map产生且仅产生一个与之对应的Feature Map,也就是说输出层的Feature Map的channel数量等于输入层的Feature map的数量。因此
DepthwiseConv
不需要控制输出层的Feature Map的数量,因此并没有num_filters 这个参数,这个参数是和输入特征的channels数相等。
standard Convolution运算量:3*3跨通道运算 C*(C*(K**2)*x),其中x为一个kernel核在一个一维的输入特征上运算需要滑动的次数,这里假设卷积核个数和输入通道数都是C;
Depth-wise Separable Convolution运算量:单通道运算(C*(K**2)*x)+ 跨通道1*1卷积 C*(C*(1**2)*x),,其中x为一个kernel核在一个一维的输入特征上运算需要滑动的次数,这里假设卷积核个数和输入通道数都是C;
Depthwise卷积示意图(3个通道)
主要创新点:
1,Inverted residuals:V2 在 DW 卷积之前新加了一个 1*1 大小PW 卷积。这么做的原因,是因为 DW 卷积由于本身的计算特性决定它自己没有改变通道数的能力,上一层给它多少通道,它就只能输出多少通道。所以如果上一层给的通道数本身很少的话,DW 也只能很委屈的在低维空间提特征,因此效果不够好。现在 V2 为了改善这个问题,给每个 DW 之前都配备了一个 PW,专门用来升维,定义升维系数 t(而在v2中这个值一般是介于 之间的数,在作者的实验中,
),这样不管输入通道数
是多是少,经过第一个 PW 升维之后,DW 都是在相对的更高维 (
) 进行着辛勤工作的。主要也是为了提取更多的通道信息,得到更多的特征线信息。
2,Linear bottlenecks:V2 去掉了第二个 PW 的激活函数,意思就是bottleneck的输出不接非线性激活层。论文作者称其为 Linear Bottleneck。这么做的原因,是因为作者认为激活函数在高维空间能够有效的增加非线性,而在低维空间时则会破坏特征,不如线性的效果好。由于第二个 PW 的主要功能就是降维,因此按照上面的理论,降维之后就不宜再使用 ReLU6 了。
再看看MobileNetV2的block 与ResNet 的block:主要不同之处就在于,ResNet是:压缩”→“卷积提特征”→“扩张”,MobileNetV2则是Inverted residuals, 即:“扩张”→“卷积提特征”→ “压缩
具体mobilenetV2的宏观结构如下:t表示每个bottleneck的PW层的expand系数,也就是channels扩张系数,
c表示每个bottleneck的输出通道数,也就是每个bottleneck输出的PW的channels数,用于降维,
n表示有多少个bottleneck连接在一起,s表示第一个bottleneck的DW层的stride,表示下采样;
附上mobilenetv2的源码,可以通过netscope: https://ethereon.github.io/netscope/#/editor查看:
name: "MOBILENET_V2"
layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size:
}
image_data_param {
source: "./train.txt"
batch_size:
shuffle: false
}
}
layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
crop_size:
}
image_data_param {
source: "./valid.txt"
batch_size:
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
stride:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv1/bn"
type: "BatchNorm"
bottom: "conv1"
top: "conv1/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv1/scale"
type: "Scale"
bottom: "conv1/bn"
top: "conv1/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1/bn"
top: "conv1/bn"
}
layer {
name: "conv2_1/expand"
type: "Convolution"
bottom: "conv1/bn"
top: "conv2_1/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2_1/expand/bn"
type: "BatchNorm"
bottom: "conv2_1/expand"
top: "conv2_1/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv2_1/expand/scale"
type: "Scale"
bottom: "conv2_1/expand/bn"
top: "conv2_1/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu2_1/expand"
type: "ReLU"
bottom: "conv2_1/expand/bn"
top: "conv2_1/expand/bn"
}
layer {
name: "conv2_1/dwise"
type: "Convolution"
bottom: "conv2_1/expand/bn"
top: "conv2_1/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv2_1/dwise/bn"
type: "BatchNorm"
bottom: "conv2_1/dwise"
top: "conv2_1/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv2_1/dwise/scale"
type: "Scale"
bottom: "conv2_1/dwise/bn"
top: "conv2_1/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu2_1/dwise"
type: "ReLU"
bottom: "conv2_1/dwise/bn"
top: "conv2_1/dwise/bn"
}
layer {
name: "conv2_1/linear"
type: "Convolution"
bottom: "conv2_1/dwise/bn"
top: "conv2_1/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2_1/linear/bn"
type: "BatchNorm"
bottom: "conv2_1/linear"
top: "conv2_1/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv2_1/linear/scale"
type: "Scale"
bottom: "conv2_1/linear/bn"
top: "conv2_1/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "conv2_2/expand"
type: "Convolution"
bottom: "conv2_1/linear/bn"
top: "conv2_2/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2_2/expand/bn"
type: "BatchNorm"
bottom: "conv2_2/expand"
top: "conv2_2/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv2_2/expand/scale"
type: "Scale"
bottom: "conv2_2/expand/bn"
top: "conv2_2/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu2_2/expand"
type: "ReLU"
bottom: "conv2_2/expand/bn"
top: "conv2_2/expand/bn"
}
layer {
name: "conv2_2/dwise"
type: "Convolution"
bottom: "conv2_2/expand/bn"
top: "conv2_2/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
stride:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv2_2/dwise/bn"
type: "BatchNorm"
bottom: "conv2_2/dwise"
top: "conv2_2/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv2_2/dwise/scale"
type: "Scale"
bottom: "conv2_2/dwise/bn"
top: "conv2_2/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu2_2/dwise"
type: "ReLU"
bottom: "conv2_2/dwise/bn"
top: "conv2_2/dwise/bn"
}
layer {
name: "conv2_2/linear"
type: "Convolution"
bottom: "conv2_2/dwise/bn"
top: "conv2_2/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2_2/linear/bn"
type: "BatchNorm"
bottom: "conv2_2/linear"
top: "conv2_2/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv2_2/linear/scale"
type: "Scale"
bottom: "conv2_2/linear/bn"
top: "conv2_2/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "conv3_1/expand"
type: "Convolution"
bottom: "conv2_2/linear/bn"
top: "conv3_1/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3_1/expand/bn"
type: "BatchNorm"
bottom: "conv3_1/expand"
top: "conv3_1/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv3_1/expand/scale"
type: "Scale"
bottom: "conv3_1/expand/bn"
top: "conv3_1/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu3_1/expand"
type: "ReLU"
bottom: "conv3_1/expand/bn"
top: "conv3_1/expand/bn"
}
layer {
name: "conv3_1/dwise"
type: "Convolution"
bottom: "conv3_1/expand/bn"
top: "conv3_1/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv3_1/dwise/bn"
type: "BatchNorm"
bottom: "conv3_1/dwise"
top: "conv3_1/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv3_1/dwise/scale"
type: "Scale"
bottom: "conv3_1/dwise/bn"
top: "conv3_1/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu3_1/dwise"
type: "ReLU"
bottom: "conv3_1/dwise/bn"
top: "conv3_1/dwise/bn"
}
layer {
name: "conv3_1/linear"
type: "Convolution"
bottom: "conv3_1/dwise/bn"
top: "conv3_1/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3_1/linear/bn"
type: "BatchNorm"
bottom: "conv3_1/linear"
top: "conv3_1/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv3_1/linear/scale"
type: "Scale"
bottom: "conv3_1/linear/bn"
top: "conv3_1/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "block_3_1"
type: "Eltwise"
bottom: "conv2_2/linear/bn"
bottom: "conv3_1/linear/bn"
top: "block_3_1"
}
layer {
name: "conv3_2/expand"
type: "Convolution"
bottom: "block_3_1"
top: "conv3_2/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3_2/expand/bn"
type: "BatchNorm"
bottom: "conv3_2/expand"
top: "conv3_2/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv3_2/expand/scale"
type: "Scale"
bottom: "conv3_2/expand/bn"
top: "conv3_2/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu3_2/expand"
type: "ReLU"
bottom: "conv3_2/expand/bn"
top: "conv3_2/expand/bn"
}
layer {
name: "conv3_2/dwise"
type: "Convolution"
bottom: "conv3_2/expand/bn"
top: "conv3_2/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
stride:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv3_2/dwise/bn"
type: "BatchNorm"
bottom: "conv3_2/dwise"
top: "conv3_2/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv3_2/dwise/scale"
type: "Scale"
bottom: "conv3_2/dwise/bn"
top: "conv3_2/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu3_2/dwise"
type: "ReLU"
bottom: "conv3_2/dwise/bn"
top: "conv3_2/dwise/bn"
}
layer {
name: "conv3_2/linear"
type: "Convolution"
bottom: "conv3_2/dwise/bn"
top: "conv3_2/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3_2/linear/bn"
type: "BatchNorm"
bottom: "conv3_2/linear"
top: "conv3_2/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv3_2/linear/scale"
type: "Scale"
bottom: "conv3_2/linear/bn"
top: "conv3_2/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "conv4_1/expand"
type: "Convolution"
bottom: "conv3_2/linear/bn"
top: "conv4_1/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_1/expand/bn"
type: "BatchNorm"
bottom: "conv4_1/expand"
top: "conv4_1/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_1/expand/scale"
type: "Scale"
bottom: "conv4_1/expand/bn"
top: "conv4_1/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu4_1/expand"
type: "ReLU"
bottom: "conv4_1/expand/bn"
top: "conv4_1/expand/bn"
}
layer {
name: "conv4_1/dwise"
type: "Convolution"
bottom: "conv4_1/expand/bn"
top: "conv4_1/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv4_1/dwise/bn"
type: "BatchNorm"
bottom: "conv4_1/dwise"
top: "conv4_1/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_1/dwise/scale"
type: "Scale"
bottom: "conv4_1/dwise/bn"
top: "conv4_1/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu4_1/dwise"
type: "ReLU"
bottom: "conv4_1/dwise/bn"
top: "conv4_1/dwise/bn"
}
layer {
name: "conv4_1/linear"
type: "Convolution"
bottom: "conv4_1/dwise/bn"
top: "conv4_1/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_1/linear/bn"
type: "BatchNorm"
bottom: "conv4_1/linear"
top: "conv4_1/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_1/linear/scale"
type: "Scale"
bottom: "conv4_1/linear/bn"
top: "conv4_1/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "block_4_1"
type: "Eltwise"
bottom: "conv3_2/linear/bn"
bottom: "conv4_1/linear/bn"
top: "block_4_1"
}
layer {
name: "conv4_2/expand"
type: "Convolution"
bottom: "block_4_1"
top: "conv4_2/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_2/expand/bn"
type: "BatchNorm"
bottom: "conv4_2/expand"
top: "conv4_2/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_2/expand/scale"
type: "Scale"
bottom: "conv4_2/expand/bn"
top: "conv4_2/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu4_2/expand"
type: "ReLU"
bottom: "conv4_2/expand/bn"
top: "conv4_2/expand/bn"
}
layer {
name: "conv4_2/dwise"
type: "Convolution"
bottom: "conv4_2/expand/bn"
top: "conv4_2/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv4_2/dwise/bn"
type: "BatchNorm"
bottom: "conv4_2/dwise"
top: "conv4_2/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_2/dwise/scale"
type: "Scale"
bottom: "conv4_2/dwise/bn"
top: "conv4_2/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu4_2/dwise"
type: "ReLU"
bottom: "conv4_2/dwise/bn"
top: "conv4_2/dwise/bn"
}
layer {
name: "conv4_2/linear"
type: "Convolution"
bottom: "conv4_2/dwise/bn"
top: "conv4_2/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_2/linear/bn"
type: "BatchNorm"
bottom: "conv4_2/linear"
top: "conv4_2/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_2/linear/scale"
type: "Scale"
bottom: "conv4_2/linear/bn"
top: "conv4_2/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "block_4_2"
type: "Eltwise"
bottom: "block_4_1"
bottom: "conv4_2/linear/bn"
top: "block_4_2"
}
layer {
name: "conv4_3/expand"
type: "Convolution"
bottom: "block_4_2"
top: "conv4_3/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_3/expand/bn"
type: "BatchNorm"
bottom: "conv4_3/expand"
top: "conv4_3/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_3/expand/scale"
type: "Scale"
bottom: "conv4_3/expand/bn"
top: "conv4_3/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu4_3/expand"
type: "ReLU"
bottom: "conv4_3/expand/bn"
top: "conv4_3/expand/bn"
}
layer {
name: "conv4_3/dwise"
type: "Convolution"
bottom: "conv4_3/expand/bn"
top: "conv4_3/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv4_3/dwise/bn"
type: "BatchNorm"
bottom: "conv4_3/dwise"
top: "conv4_3/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_3/dwise/scale"
type: "Scale"
bottom: "conv4_3/dwise/bn"
top: "conv4_3/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu4_3/dwise"
type: "ReLU"
bottom: "conv4_3/dwise/bn"
top: "conv4_3/dwise/bn"
}
layer {
name: "conv4_3/linear"
type: "Convolution"
bottom: "conv4_3/dwise/bn"
top: "conv4_3/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_3/linear/bn"
type: "BatchNorm"
bottom: "conv4_3/linear"
top: "conv4_3/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_3/linear/scale"
type: "Scale"
bottom: "conv4_3/linear/bn"
top: "conv4_3/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "conv4_4/expand"
type: "Convolution"
bottom: "conv4_3/linear/bn"
top: "conv4_4/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_4/expand/bn"
type: "BatchNorm"
bottom: "conv4_4/expand"
top: "conv4_4/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_4/expand/scale"
type: "Scale"
bottom: "conv4_4/expand/bn"
top: "conv4_4/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu4_4/expand"
type: "ReLU"
bottom: "conv4_4/expand/bn"
top: "conv4_4/expand/bn"
}
layer {
name: "conv4_4/dwise"
type: "Convolution"
bottom: "conv4_4/expand/bn"
top: "conv4_4/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv4_4/dwise/bn"
type: "BatchNorm"
bottom: "conv4_4/dwise"
top: "conv4_4/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_4/dwise/scale"
type: "Scale"
bottom: "conv4_4/dwise/bn"
top: "conv4_4/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu4_4/dwise"
type: "ReLU"
bottom: "conv4_4/dwise/bn"
top: "conv4_4/dwise/bn"
}
layer {
name: "conv4_4/linear"
type: "Convolution"
bottom: "conv4_4/dwise/bn"
top: "conv4_4/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_4/linear/bn"
type: "BatchNorm"
bottom: "conv4_4/linear"
top: "conv4_4/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_4/linear/scale"
type: "Scale"
bottom: "conv4_4/linear/bn"
top: "conv4_4/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "block_4_4"
type: "Eltwise"
bottom: "conv4_3/linear/bn"
bottom: "conv4_4/linear/bn"
top: "block_4_4"
}
layer {
name: "conv4_5/expand"
type: "Convolution"
bottom: "block_4_4"
top: "conv4_5/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_5/expand/bn"
type: "BatchNorm"
bottom: "conv4_5/expand"
top: "conv4_5/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_5/expand/scale"
type: "Scale"
bottom: "conv4_5/expand/bn"
top: "conv4_5/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu4_5/expand"
type: "ReLU"
bottom: "conv4_5/expand/bn"
top: "conv4_5/expand/bn"
}
layer {
name: "conv4_5/dwise"
type: "Convolution"
bottom: "conv4_5/expand/bn"
top: "conv4_5/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv4_5/dwise/bn"
type: "BatchNorm"
bottom: "conv4_5/dwise"
top: "conv4_5/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_5/dwise/scale"
type: "Scale"
bottom: "conv4_5/dwise/bn"
top: "conv4_5/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu4_5/dwise"
type: "ReLU"
bottom: "conv4_5/dwise/bn"
top: "conv4_5/dwise/bn"
}
layer {
name: "conv4_5/linear"
type: "Convolution"
bottom: "conv4_5/dwise/bn"
top: "conv4_5/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_5/linear/bn"
type: "BatchNorm"
bottom: "conv4_5/linear"
top: "conv4_5/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_5/linear/scale"
type: "Scale"
bottom: "conv4_5/linear/bn"
top: "conv4_5/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "block_4_5"
type: "Eltwise"
bottom: "block_4_4"
bottom: "conv4_5/linear/bn"
top: "block_4_5"
}
layer {
name: "conv4_6/expand"
type: "Convolution"
bottom: "block_4_5"
top: "conv4_6/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_6/expand/bn"
type: "BatchNorm"
bottom: "conv4_6/expand"
top: "conv4_6/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_6/expand/scale"
type: "Scale"
bottom: "conv4_6/expand/bn"
top: "conv4_6/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu4_6/expand"
type: "ReLU"
bottom: "conv4_6/expand/bn"
top: "conv4_6/expand/bn"
}
layer {
name: "conv4_6/dwise"
type: "Convolution"
bottom: "conv4_6/expand/bn"
top: "conv4_6/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv4_6/dwise/bn"
type: "BatchNorm"
bottom: "conv4_6/dwise"
top: "conv4_6/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_6/dwise/scale"
type: "Scale"
bottom: "conv4_6/dwise/bn"
top: "conv4_6/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu4_6/dwise"
type: "ReLU"
bottom: "conv4_6/dwise/bn"
top: "conv4_6/dwise/bn"
}
layer {
name: "conv4_6/linear"
type: "Convolution"
bottom: "conv4_6/dwise/bn"
top: "conv4_6/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_6/linear/bn"
type: "BatchNorm"
bottom: "conv4_6/linear"
top: "conv4_6/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_6/linear/scale"
type: "Scale"
bottom: "conv4_6/linear/bn"
top: "conv4_6/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "block_4_6"
type: "Eltwise"
bottom: "block_4_5"
bottom: "conv4_6/linear/bn"
top: "block_4_6"
}
layer {
name: "conv4_7/expand"
type: "Convolution"
bottom: "block_4_6"
top: "conv4_7/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_7/expand/bn"
type: "BatchNorm"
bottom: "conv4_7/expand"
top: "conv4_7/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_7/expand/scale"
type: "Scale"
bottom: "conv4_7/expand/bn"
top: "conv4_7/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu4_7/expand"
type: "ReLU"
bottom: "conv4_7/expand/bn"
top: "conv4_7/expand/bn"
}
layer {
name: "conv4_7/dwise"
type: "Convolution"
bottom: "conv4_7/expand/bn"
top: "conv4_7/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
stride:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv4_7/dwise/bn"
type: "BatchNorm"
bottom: "conv4_7/dwise"
top: "conv4_7/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_7/dwise/scale"
type: "Scale"
bottom: "conv4_7/dwise/bn"
top: "conv4_7/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu4_7/dwise"
type: "ReLU"
bottom: "conv4_7/dwise/bn"
top: "conv4_7/dwise/bn"
}
layer {
name: "conv4_7/linear"
type: "Convolution"
bottom: "conv4_7/dwise/bn"
top: "conv4_7/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_7/linear/bn"
type: "BatchNorm"
bottom: "conv4_7/linear"
top: "conv4_7/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv4_7/linear/scale"
type: "Scale"
bottom: "conv4_7/linear/bn"
top: "conv4_7/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "conv5_1/expand"
type: "Convolution"
bottom: "conv4_7/linear/bn"
top: "conv5_1/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_1/expand/bn"
type: "BatchNorm"
bottom: "conv5_1/expand"
top: "conv5_1/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv5_1/expand/scale"
type: "Scale"
bottom: "conv5_1/expand/bn"
top: "conv5_1/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu5_1/expand"
type: "ReLU"
bottom: "conv5_1/expand/bn"
top: "conv5_1/expand/bn"
}
layer {
name: "conv5_1/dwise"
type: "Convolution"
bottom: "conv5_1/expand/bn"
top: "conv5_1/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv5_1/dwise/bn"
type: "BatchNorm"
bottom: "conv5_1/dwise"
top: "conv5_1/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv5_1/dwise/scale"
type: "Scale"
bottom: "conv5_1/dwise/bn"
top: "conv5_1/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu5_1/dwise"
type: "ReLU"
bottom: "conv5_1/dwise/bn"
top: "conv5_1/dwise/bn"
}
layer {
name: "conv5_1/linear"
type: "Convolution"
bottom: "conv5_1/dwise/bn"
top: "conv5_1/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_1/linear/bn"
type: "BatchNorm"
bottom: "conv5_1/linear"
top: "conv5_1/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv5_1/linear/scale"
type: "Scale"
bottom: "conv5_1/linear/bn"
top: "conv5_1/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "block_5_1"
type: "Eltwise"
bottom: "conv4_7/linear/bn"
bottom: "conv5_1/linear/bn"
top: "block_5_1"
}
layer {
name: "conv5_2/expand"
type: "Convolution"
bottom: "block_5_1"
top: "conv5_2/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_2/expand/bn"
type: "BatchNorm"
bottom: "conv5_2/expand"
top: "conv5_2/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv5_2/expand/scale"
type: "Scale"
bottom: "conv5_2/expand/bn"
top: "conv5_2/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu5_2/expand"
type: "ReLU"
bottom: "conv5_2/expand/bn"
top: "conv5_2/expand/bn"
}
layer {
name: "conv5_2/dwise"
type: "Convolution"
bottom: "conv5_2/expand/bn"
top: "conv5_2/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv5_2/dwise/bn"
type: "BatchNorm"
bottom: "conv5_2/dwise"
top: "conv5_2/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv5_2/dwise/scale"
type: "Scale"
bottom: "conv5_2/dwise/bn"
top: "conv5_2/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu5_2/dwise"
type: "ReLU"
bottom: "conv5_2/dwise/bn"
top: "conv5_2/dwise/bn"
}
layer {
name: "conv5_2/linear"
type: "Convolution"
bottom: "conv5_2/dwise/bn"
top: "conv5_2/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_2/linear/bn"
type: "BatchNorm"
bottom: "conv5_2/linear"
top: "conv5_2/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv5_2/linear/scale"
type: "Scale"
bottom: "conv5_2/linear/bn"
top: "conv5_2/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "block_5_2"
type: "Eltwise"
bottom: "block_5_1"
bottom: "conv5_2/linear/bn"
top: "block_5_2"
}
layer {
name: "conv5_3/expand"
type: "Convolution"
bottom: "block_5_2"
top: "conv5_3/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_3/expand/bn"
type: "BatchNorm"
bottom: "conv5_3/expand"
top: "conv5_3/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv5_3/expand/scale"
type: "Scale"
bottom: "conv5_3/expand/bn"
top: "conv5_3/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu5_3/expand"
type: "ReLU"
bottom: "conv5_3/expand/bn"
top: "conv5_3/expand/bn"
}
layer {
name: "conv5_3/dwise"
type: "Convolution"
bottom: "conv5_3/expand/bn"
top: "conv5_3/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
stride:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv5_3/dwise/bn"
type: "BatchNorm"
bottom: "conv5_3/dwise"
top: "conv5_3/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv5_3/dwise/scale"
type: "Scale"
bottom: "conv5_3/dwise/bn"
top: "conv5_3/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu5_3/dwise"
type: "ReLU"
bottom: "conv5_3/dwise/bn"
top: "conv5_3/dwise/bn"
}
layer {
name: "conv5_3/linear"
type: "Convolution"
bottom: "conv5_3/dwise/bn"
top: "conv5_3/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_3/linear/bn"
type: "BatchNorm"
bottom: "conv5_3/linear"
top: "conv5_3/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv5_3/linear/scale"
type: "Scale"
bottom: "conv5_3/linear/bn"
top: "conv5_3/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "conv6_1/expand"
type: "Convolution"
bottom: "conv5_3/linear/bn"
top: "conv6_1/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6_1/expand/bn"
type: "BatchNorm"
bottom: "conv6_1/expand"
top: "conv6_1/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv6_1/expand/scale"
type: "Scale"
bottom: "conv6_1/expand/bn"
top: "conv6_1/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu6_1/expand"
type: "ReLU"
bottom: "conv6_1/expand/bn"
top: "conv6_1/expand/bn"
}
layer {
name: "conv6_1/dwise"
type: "Convolution"
bottom: "conv6_1/expand/bn"
top: "conv6_1/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv6_1/dwise/bn"
type: "BatchNorm"
bottom: "conv6_1/dwise"
top: "conv6_1/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv6_1/dwise/scale"
type: "Scale"
bottom: "conv6_1/dwise/bn"
top: "conv6_1/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu6_1/dwise"
type: "ReLU"
bottom: "conv6_1/dwise/bn"
top: "conv6_1/dwise/bn"
}
layer {
name: "conv6_1/linear"
type: "Convolution"
bottom: "conv6_1/dwise/bn"
top: "conv6_1/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6_1/linear/bn"
type: "BatchNorm"
bottom: "conv6_1/linear"
top: "conv6_1/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv6_1/linear/scale"
type: "Scale"
bottom: "conv6_1/linear/bn"
top: "conv6_1/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "block_6_1"
type: "Eltwise"
bottom: "conv5_3/linear/bn"
bottom: "conv6_1/linear/bn"
top: "block_6_1"
}
layer {
name: "conv6_2/expand"
type: "Convolution"
bottom: "block_6_1"
top: "conv6_2/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6_2/expand/bn"
type: "BatchNorm"
bottom: "conv6_2/expand"
top: "conv6_2/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv6_2/expand/scale"
type: "Scale"
bottom: "conv6_2/expand/bn"
top: "conv6_2/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu6_2/expand"
type: "ReLU"
bottom: "conv6_2/expand/bn"
top: "conv6_2/expand/bn"
}
layer {
name: "conv6_2/dwise"
type: "Convolution"
bottom: "conv6_2/expand/bn"
top: "conv6_2/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv6_2/dwise/bn"
type: "BatchNorm"
bottom: "conv6_2/dwise"
top: "conv6_2/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv6_2/dwise/scale"
type: "Scale"
bottom: "conv6_2/dwise/bn"
top: "conv6_2/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu6_2/dwise"
type: "ReLU"
bottom: "conv6_2/dwise/bn"
top: "conv6_2/dwise/bn"
}
layer {
name: "conv6_2/linear"
type: "Convolution"
bottom: "conv6_2/dwise/bn"
top: "conv6_2/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6_2/linear/bn"
type: "BatchNorm"
bottom: "conv6_2/linear"
top: "conv6_2/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv6_2/linear/scale"
type: "Scale"
bottom: "conv6_2/linear/bn"
top: "conv6_2/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "block_6_2"
type: "Eltwise"
bottom: "block_6_1"
bottom: "conv6_2/linear/bn"
top: "block_6_2"
}
layer {
name: "conv6_3/expand"
type: "Convolution"
bottom: "block_6_2"
top: "conv6_3/expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6_3/expand/bn"
type: "BatchNorm"
bottom: "conv6_3/expand"
top: "conv6_3/expand/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv6_3/expand/scale"
type: "Scale"
bottom: "conv6_3/expand/bn"
top: "conv6_3/expand/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu6_3/expand"
type: "ReLU"
bottom: "conv6_3/expand/bn"
top: "conv6_3/expand/bn"
}
layer {
name: "conv6_3/dwise"
type: "Convolution"
bottom: "conv6_3/expand/bn"
top: "conv6_3/dwise"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
pad:
kernel_size:
group:
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv6_3/dwise/bn"
type: "BatchNorm"
bottom: "conv6_3/dwise"
top: "conv6_3/dwise/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv6_3/dwise/scale"
type: "Scale"
bottom: "conv6_3/dwise/bn"
top: "conv6_3/dwise/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "relu6_3/dwise"
type: "ReLU"
bottom: "conv6_3/dwise/bn"
top: "conv6_3/dwise/bn"
}
layer {
name: "conv6_3/linear"
type: "Convolution"
bottom: "conv6_3/dwise/bn"
top: "conv6_3/linear"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6_3/linear/bn"
type: "BatchNorm"
bottom: "conv6_3/linear"
top: "conv6_3/linear/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv6_3/linear/scale"
type: "Scale"
bottom: "conv6_3/linear/bn"
top: "conv6_3/linear/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.000000001
}
}
layer {
name: "conv6_4"
type: "Convolution"
bottom: "conv6_3/linear/bn"
top: "conv6_4"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output:
bias_term: false
kernel_size:
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6_4/bn"
type: "BatchNorm"
bottom: "conv6_4"
top: "conv6_4/bn"
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
param {
lr_mult: 0.0
decay_mult: 0.0
}
}
layer {
name: "conv6_4/scale"
type: "Scale"
bottom: "conv6_4/bn"
top: "conv6_4/bn"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 1.0
decay_mult: 0.0
}
scale_param {
filler {
value: 0.5
}
bias_term: true
bias_filler {
value:
}
l1_lambda: 0.001
}
}
layer {
name: "relu6_4"
type: "ReLU"
bottom: "conv6_4/bn"
top: "conv6_4/bn"
}
layer {
name: "pool6"
type: "Pooling"
bottom: "conv6_4/bn"
top: "pool6"
pooling_param {
pool: AVE
global_pooling: true
}
}
layer {
name: "food_fc7"
type: "Convolution"
bottom: "pool6"
top: "fc7"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
#num_output:
num_output:
kernel_size:
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc7"
bottom: "label"
top: "loss"
}
layer {
name: "top1/acc"
type: "Accuracy"
bottom: "fc7"
bottom: "label"
top: "top1/acc"
include {
phase: TEST
}
}
layer {
name: "top5/acc"
type: "Accuracy"
bottom: "fc7"
bottom: "label"
top: "top5/acc"
include {
phase: TEST
}
accuracy_param {
top_k:
}
}
MobileNet V2深入理解的更多相关文章
- 轻量化模型:MobileNet v2
MobileNet v2 论文链接:https://arxiv.org/abs/1801.04381 MobileNet v2是对MobileNet v1的改进,也是一个轻量化模型. 关于Mobile ...
- mobile-net v2 学习记录。我是菜鸡!
声明:只是自己写博客总结下,不保证正确性,我的理解很可能是错的.. 首先,mobile net V1的主要特点是: 1.深度可分离卷积.用depth-wise convolution来分层过滤特征,再 ...
- YOLO V2论文理解
概述 YOLO(You Only Look Once: Unified, Real-Time Object Detection)从v1版本进化到了v2版本,作者在darknet主页先行一步放出源代码, ...
- MobileNet V2
https://zhuanlan.zhihu.com/p/33075914 http://blog.csdn.net/u011995719/article/details/79135818 https ...
- 卷积神经网络学习笔记——轻量化网络MobileNet系列(V1,V2,V3)
完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 这里结合网络的资料和Mo ...
- 从Inception v1,v2,v3,v4,RexNeXt到Xception再到MobileNets,ShuffleNet,MobileNetV2
from:https://blog.csdn.net/qq_14845119/article/details/73648100 Inception v1的网络,主要提出了Inceptionmodule ...
- 深度学习笔记(十一)网络 Inception, Xception, MobileNet, ShuffeNet, ResNeXt, SqueezeNet, EfficientNet, MixConv
1. Abstract 本文旨在简单介绍下各种轻量级网络,纳尼?!好吧,不限于轻量级 2. Introduction 2.1 Inception 在最初的版本 Inception/GoogleNet, ...
- MobileNet系列
最近一段时间,重新研读了谷歌的mobilenet系列,对该系列有新的认识. 1.MobileNet V1 这篇论文是谷歌在2017年提出了,专注于移动端或者嵌入式设备中的轻量级CNN网络.该论文最大的 ...
- 轻量级卷积神经网络——MobileNet
谷歌论文题目: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 其他参考: CNN ...
随机推荐
- linux 基础11-例行性命令
1. 什么是例行性命令 1.1 linux工作排程的种类: linux例行性命令主要有两种: at:仅执行一次就从linux的任务中取消 cron:将持续例行性的工作下去 1.2 系统常见的例行性命令 ...
- MySQL5.7安装详解及常见安装问题解决
数据库安装 Python开发使用mysql数据库5.5版本以上(django2.0之后放弃mysql5.5之前的支持),在mysql版本当中5.7之前的版本都有.exe或者.msi的可执行安装文件,但 ...
- [Python] For 嵌套循环打印图形 nested loop-练习题答案
前一篇:[Python] For 嵌套循环打印图形 nested loop-练习题 [python的for循环嵌套打印如下图形] 图形一: 输出结果: ******* ******* ******* ...
- Mybatis报错: There is no getter for property named xxx
在mapper文件中函数的形参上加上注解. 例如: 出现了如下错误:核心错误提示就是There is no getter for property named xxx ### Error qu ...
- No PostCSS Config found in报错解决
前情提要]日前本人将本地项目上传GitHub之后,然后再clone到本地,运行是报错:Error: No PostCSS Config found in... 项目在本地打包运行的时候不报错,上传到 ...
- 【SCOI2007】降雨量
新人求助,降雨量那题本机AC提交WAWAWA…… 原题: 我们常常会说这样的话:“X年是自Y年以来降雨量最多的”.它的含义是X年的降雨量不超过Y年,且对于任意Y<Z<X,Z年的降雨量严格小 ...
- 【python】使用xlrd,xlwt来操作已存在的excel表
import xlrd import xlwt from xlutils.copy import copy # 打开想要更改的excel文件 old_excel = xlrd.open_workboo ...
- Mysql批量更新的一个坑-&allowMultiQueries=true允许批量更新(转)
实际上,我们经常会遇到这样的需求,那就是利用Mybatis批量更新或者批量插入,但是,实际上即使Mybatis完美支持你的sql,你也得看看你说操作的数据库是否支持,而阿福,最近就遇到这样的一个坑. ...
- 18、属性赋值-@Value赋值
18.属性赋值-@Value赋值 18.1 使用@Value赋值三种方式 基本数值 可以写SPEL 表达式,例如: #{} 可以写${} ,取出配置文件中的值(在运行环境变量里面的值) package ...
- C语言学习系列(四)C语言基本语法和数据类型
一.基本语法 C的令牌(Tokens) C 程序由各种令牌组成,令牌可以是关键字.标识符.常量.字符串值,或者是一个符号. 关键字(保留字) auto else long switch break e ...