gensim word2vec实践
# -*- coding: utf-8 -*-
import jieba
import jieba.analyse
# suggest_freq调节单个词语的词频,使其能(或不能)被分出来
jieba.suggest_freq('沙瑞金', True)
jieba.suggest_freq('田国富', True)
jieba.suggest_freq('高育良', True)
jieba.suggest_freq('侯亮平', True)
jieba.suggest_freq('钟小艾', True)
jieba.suggest_freq('陈岩石', True)
jieba.suggest_freq('欧阳菁', True)
jieba.suggest_freq('易学习', True)
jieba.suggest_freq('王大路', True)
jieba.suggest_freq('蔡成功', True)
jieba.suggest_freq('孙连城', True)
jieba.suggest_freq('季昌明', True)
jieba.suggest_freq('丁义珍', True)
jieba.suggest_freq('郑西坡', True)
jieba.suggest_freq('赵东来', True)
jieba.suggest_freq('高小琴', True)
jieba.suggest_freq('赵瑞龙', True)
jieba.suggest_freq('林华华', True)
jieba.suggest_freq('陆亦可', True)
jieba.suggest_freq('刘新建', True)
jieba.suggest_freq('刘庆祝', True)
with open('./in_the_name_of_people.txt', 'rb') as f:
document = f.read()
document_cut = jieba.cut(document)
result = ' '.join(document_cut)
result = result.encode('utf-8')
with open('./in_the_name_of_people_segment.txt', 'wb+') as f2:
f2.write(result)
f.close()
f2.close()
读分词后的文件到内存,这里使用了word2vec提供的LineSentence类来读文件,然后使用word2vec的模型
- min_count:忽略总频率低于此值的所有单词
- size:指定了训练时词向量维度,默认为100
- window:句中当前词与预测词之间的最大距离
- hs:If 1, hierarchical softmax .If 0 negative sampling.
# import modules & set up logging
import logging
import os
from gensim.models import word2vec
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
sentences = word2vec.LineSentence('./in_the_name_of_people_segment.txt')
model = word2vec.Word2Vec(sentences, hs=1, min_count=1, window=3, size=100)
2019-05-14 17:13:22,538 : INFO : collecting all words and their counts
2019-05-14 17:13:22,540 : INFO : PROGRESS: at sentence #0, processed 0 words, keeping 0 word types
2019-05-14 17:13:22,593 : INFO : collected 17878 word types from a corpus of 161343 raw words and 2311 sentences
2019-05-14 17:13:22,594 : INFO : Loading a fresh vocabulary
2019-05-14 17:13:22,673 : INFO : effective_min_count=1 retains 17878 unique words (100% of original 17878, drops 0)
2019-05-14 17:13:22,674 : INFO : effective_min_count=1 leaves 161343 word corpus (100% of original 161343, drops 0)
2019-05-14 17:13:22,724 : INFO : deleting the raw counts dictionary of 17878 items
2019-05-14 17:13:22,724 : INFO : sample=0.001 downsamples 38 most-common words
2019-05-14 17:13:22,725 : INFO : downsampling leaves estimated 120578 word corpus (74.7% of prior 161343)
2019-05-14 17:13:22,738 : INFO : constructing a huffman tree from 17878 words
2019-05-14 17:13:23,069 : INFO : built huffman tree with maximum node depth 17
2019-05-14 17:13:23,097 : INFO : estimated required memory for 17878 words and 100 dimensions: 33968200 bytes
2019-05-14 17:13:23,098 : INFO : resetting layer weights
2019-05-14 17:13:23,271 : INFO : training model with 3 workers on 17878 vocabulary and 100 features, using sg=0 hs=1 sample=0.001 negative=5 window=3
2019-05-14 17:13:23,457 : INFO : worker thread finished; awaiting finish of 2 more threads
2019-05-14 17:13:23,458 : INFO : worker thread finished; awaiting finish of 1 more threads
2019-05-14 17:13:23,470 : INFO : worker thread finished; awaiting finish of 0 more threads
2019-05-14 17:13:23,471 : INFO : EPOCH - 1 : training on 161343 raw words (120329 effective words) took 0.2s, 613072 effective words/s
2019-05-14 17:13:23,655 : INFO : worker thread finished; awaiting finish of 2 more threads
2019-05-14 17:13:23,658 : INFO : worker thread finished; awaiting finish of 1 more threads
2019-05-14 17:13:23,676 : INFO : worker thread finished; awaiting finish of 0 more threads
2019-05-14 17:13:23,677 : INFO : EPOCH - 2 : training on 161343 raw words (120484 effective words) took 0.2s, 592001 effective words/s
2019-05-14 17:13:23,865 : INFO : worker thread finished; awaiting finish of 2 more threads
2019-05-14 17:13:23,866 : INFO : worker thread finished; awaiting finish of 1 more threads
2019-05-14 17:13:23,882 : INFO : worker thread finished; awaiting finish of 0 more threads
2019-05-14 17:13:23,883 : INFO : EPOCH - 3 : training on 161343 raw words (120571 effective words) took 0.2s, 589983 effective words/s
2019-05-14 17:13:24,065 : INFO : worker thread finished; awaiting finish of 2 more threads
2019-05-14 17:13:24,075 : INFO : worker thread finished; awaiting finish of 1 more threads
2019-05-14 17:13:24,084 : INFO : worker thread finished; awaiting finish of 0 more threads
2019-05-14 17:13:24,085 : INFO : EPOCH - 4 : training on 161343 raw words (120615 effective words) took 0.2s, 600460 effective words/s
2019-05-14 17:13:24,273 : INFO : worker thread finished; awaiting finish of 2 more threads
2019-05-14 17:13:24,274 : INFO : worker thread finished; awaiting finish of 1 more threads
2019-05-14 17:13:24,277 : INFO : worker thread finished; awaiting finish of 0 more threads
2019-05-14 17:13:24,279 : INFO : EPOCH - 5 : training on 161343 raw words (120605 effective words) took 0.2s, 631944 effective words/s
2019-05-14 17:13:24,279 : INFO : training on a 806715 raw words (602604 effective words) took 1.0s, 598553 effective words/s
与某个词最相近的3个字的词
req_count = 5
for key in model.wv.similar_by_word('李达康', topn=100):
if len(key[0]) == 3:
req_count -= 1
print(key[0], key[1])
if req_count == 0:
break
2019-05-14 17:13:27,276 : INFO : precomputing L2-norms of word weight vectors
赵东来 0.9634759426116943
陆亦可 0.9602197408676147
蔡成功 0.9589439034461975
王大路 0.9569779634475708
祁同伟 0.9561013579368591
req_count = 5
for key in model.wv.similar_by_word('赵东来', topn=100):
if len(key[0]) == 3:
req_count -= 1
print(key[0], key[1])
if req_count == 0:
break
李达康 0.9634760618209839
陆亦可 0.9614400863647461
易学习 0.9584609866142273
祁同伟 0.9565587639808655
王大路 0.9549983739852905
req_count = 5
for key in model.wv.similar_by_word('高育良', topn=100):
if len(key[0]) == 3:
req_count -= 1
print(key[0], key[1])
if req_count == 0:
break
沙瑞金 0.9721000790596008
侯亮平 0.9408242702484131
祁同伟 0.9268442392349243
李达康 0.9241408705711365
季昌明 0.913619339466095
req_count = 5
for key in model.wv.similar_by_word('沙瑞金', topn=100):
if len(key[0]) == 3:
req_count -= 1
print(key[0], key[1])
if req_count == 0:
break
高育良 0.9721001386642456
李达康 0.9424692392349243
易学习 0.9424353241920471
无表情 0.9378770589828491
祁同伟 0.9351213574409485
计算两个词向量的相似度
print(model.wv.similarity('沙瑞金', '高育良'))
print(model.wv.similarity('李达康', '王大路'))
0.9721002
0.95697814
计算某个词的相关列表
try:
sim3 = model.most_similar(u'侯亮平',topn =20)
print(u'和 侯亮平 与相关的词有:\n')
for key in sim3:
print(key[0],key[1])
except:
print(' error')
和 侯亮平 与相关的词有:
祁同伟 0.9691112041473389
陆亦可 0.9684256911277771
季昌明 0.9582957625389099
李达康 0.952505886554718
她 0.9482855200767517
他们 0.9475176334381104
易学习 0.9456426501274109
陈岩石 0.9433715343475342
马上 0.941593587398529
高育良 0.9408242702484131
郑西坡 0.9396289587020874
王大路 0.9381627440452576
沙瑞金 0.9350594282150269
赵东来 0.9322312474250793
陈海 0.9311630725860596
司机 0.9282065033912659
蔡成功 0.9281994104385376
他 0.92684006690979
组织 0.9237431287765503
大家 0.9234919548034668
E:\Anaconda3\envs\sklearn\lib\site-packages\ipykernel_launcher.py:2: DeprecationWarning: Call to deprecated `most_similar` (Method will be removed in 4.0.0, use self.wv.most_similar() instead).
找出不同类的词
print(model.wv.doesnt_match(u"沙瑞金 高育良 李达康 刘庆祝".split()))
刘庆祝
保留模型,方便重用
model.save(u'人民的名义.model')
2019-05-14 17:13:39,338 : INFO : saving Word2Vec object under 人民的名义.model, separately None
2019-05-14 17:13:39,338 : INFO : not storing attribute vectors_norm
2019-05-14 17:13:39,339 : INFO : not storing attribute cum_table
2019-05-14 17:13:39,906 : INFO : saved 人民的名义.model
加载模型
model_2 = word2vec.Word2Vec.load('人民的名义.model')
2019-05-14 17:13:42,714 : INFO : loading Word2Vec object from 人民的名义.model
2019-05-14 17:13:42,942 : INFO : loading wv recursively from 人民的名义.model.wv.* with mmap=None
2019-05-14 17:13:42,943 : INFO : setting ignored attribute vectors_norm to None
2019-05-14 17:13:42,943 : INFO : loading vocabulary recursively from 人民的名义.model.vocabulary.* with mmap=None
2019-05-14 17:13:42,944 : INFO : loading trainables recursively from 人民的名义.model.trainables.* with mmap=None
2019-05-14 17:13:42,944 : INFO : setting ignored attribute cum_table to None
2019-05-14 17:13:42,945 : INFO : loaded 人民的名义.model
try:
sim3 = model_2.most_similar(u'侯亮平',topn =20)
print(u'和 侯亮平 与相关的词有:\n')
for key in sim3:
print(key[0],key[1])
except:
print(' error')
E:\Anaconda3\envs\sklearn\lib\site-packages\ipykernel_launcher.py:2: DeprecationWarning: Call to deprecated `most_similar` (Method will be removed in 4.0.0, use self.wv.most_similar() instead).
2019-05-14 17:14:02,083 : INFO : precomputing L2-norms of word weight vectors
和 侯亮平 与相关的词有:
祁同伟 0.9691112041473389
陆亦可 0.9684256911277771
季昌明 0.9582957625389099
李达康 0.952505886554718
她 0.9482855200767517
他们 0.9475176334381104
易学习 0.9456426501274109
陈岩石 0.9433715343475342
马上 0.941593587398529
高育良 0.9408242702484131
郑西坡 0.9396289587020874
王大路 0.9381627440452576
沙瑞金 0.9350594282150269
赵东来 0.9322312474250793
陈海 0.9311630725860596
司机 0.9282065033912659
蔡成功 0.9281994104385376
他 0.92684006690979
组织 0.9237431287765503
大家 0.9234919548034668
gensim word2vec实践的更多相关文章
- word2vec 实践
关于word2vec,这方面无论中英文的参考资料相当的多,英文方面既可以看官方推荐的论文,也可以看gensim作者Radim Řehůřek博士写得一些文章.而中文方面,推荐 @licstar的< ...
- 词向量之word2vec实践
首先感谢无私分享的各位大神,文中很多内容多有借鉴之处.本次将自己的实验过程记录,希望能帮助有需要的同学. 一.从下载数据开始 现在的中文语料库不是特别丰富,我在之前的文章中略有整理,有兴趣的可以看看. ...
- gensim Word2Vec 训练和使用(Model一定要加载到内存中,节省时间!!!)
训练模型利用gensim.models.Word2Vec(sentences)建立词向量模型该构造函数执行了三个步骤:建立一个空的模型对象,遍历一次语料库建立词典,第二次遍历语料库建立神经网络模型可以 ...
- ubuntu中使用gensim+word2vec[备忘]
python版本: 2.7.12 0. 安装python和pip 1. 用pip依次安装: numpy, cython,scipy,pattern,word2vec 五个工具包 2. 用pip安装ge ...
- gensim word2vec |来自渣渣硕的学习笔记
最近写论文跑模型,要用到word2vec,但是发现自己怎么也看不懂网上的帖子,还是自己笨吧,所以就有了我的第一篇博客!!! 关于word2vec工具打算写一个系列的,当然今天这篇文章只打算写: 如何 ...
- sklearn word2vec 实践
源代码: https://blog.csdn.net/github_38705794/article/details/75452729 一.复现时报错: Traceback (most recent ...
- 用gensim学习word2vec
在word2vec原理篇中,我们对word2vec的两种模型CBOW和Skip-Gram,以及两种解法Hierarchical Softmax和Negative Sampling做了总结.这里我们就从 ...
- Python gensim库word2vec 基本用法
ip install gensim安装好库后,即可导入使用: 1.训练模型定义 from gensim.models import Word2Vec model = Word2Vec(senten ...
- 机器学习:gensim之Word2Vec 详解
一 前言 Word2Vec是同上一篇提及的PageRank一样,都是Google的工程师和机器学习专家所提出的的:在学习这些算法.模型的时候,最好优先去看Google提出者的原汁Paper和Proje ...
随机推荐
- flask小结
http通讯过程 https://www.cnblogs.com/andy9468/p/10871079.html 1.flask开发环境 https://www.cnblogs.com/andy94 ...
- javascript实现Html Table数据表分页
直接调用: <style type="text/css"> th { font-size:18px; ...
- linux centos安装nginx1.7.4
原文转自 jerryhe326:https://www.cnblogs.com/jerrypro/p/7062101.html一.安装准备 首先由于nginx的一些模块依赖一些lib库,所以在安装ng ...
- SQL JOB实现数据库同步
数据库同步是一种比较常用的功能.以下结合我自己的体会整理的,如果有理解不完全或者有误的地方望大牛不理赐教.下面介绍的就是数据库同步的两种方式: 1.SQL JOB的方式 sql Job的方式同步数据 ...
- Python 类和对象(3)
大家有没有想我呢? 今天讲一下类的一些概念: 公开属性 私有属性 基本方法 私有方法 直接上代码 class Makeup(): brand = 'MAC' #公开属性 __producer = 'U ...
- golang中fmt的'占位符'使用
golang 的fmt 包实现了格式化I/O函数,类似于C的 printf 和 scanf. # 定义示例类型和变量 type Human struct { Name string } var peo ...
- Windows启动报错:无效的分区表 解决方法,哈哈
Windows系统启动时出现Invalid Partition Table错误 2018-07-27 16:32 今天KB小网管跟大家分享一个在重装Windows系统时会出现的一个问题Invalid ...
- proc文件系统详解
/proc 文件系统是一个虚拟文件系统,通过它可以使用一种新的方法在 Linux内核空间和用户间之间进行通信.在 /proc 文件系统中,我们可以将对虚拟文件的读写作为与内核中实体进行通信的一种手段, ...
- [唐胡璐]Java操作Sql Server 2008数据库
下载Microsoft JDBC Driver for SQL Server 直接去官网下载即可: 下载解压文件,得到sqljdbc.jar和sqljdbc4.jar。如果你使用的是jre1.7版本, ...
- 使用 EasyExcel 读取Excel(两种方式)
引入 jar 包 <dependency> <groupId>com.alibaba</groupId> <artifactId>easyexcel&l ...