Luogu P2516 [HAOI2010]最长公共子序列 DP
首先$LIS$显然:$f[i][j]=max(f[i][j-1],f[i-1][j],(a[i]==b[j])*f[i-1][j-1])$
考虑如何转移数量:
首先,不管$a[i]$是否等于$b[j]$,
都有$h[i][j]+=h[i-1][j]*(f[i][j]==f[i-1][j])+h[i][j-1]*(f[i][j]==f[i][j-1])$
然后讨论$LIS$中第三种转移:
如果$a[i]==b[j]\ \&\&\ f[i][j]==f[i-1][j-1]+1$,有$h[i][j]+=h[i-1][j-1]$
而如果$a[i]!=b[j]\ \&\&\ f[i][j]==f[i-1][j-1]$,有$h[i][j]-=h[i-1][j-1]$,此处是考虑$h[i-1][j]$与$h[i][j-1]$对答案的重复转移,所以要减去;
#include<cstdio>
#include<iostream>
#include<cstring>
#define R register int
using namespace std;
namespace Fread {
static char B[<<],*S=B,*D=B;
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
} inline bool isempty(const char& ch) {return ch<=||ch>=;}
inline void gs(char* s) {register char ch; while(isempty(ch=getchar())); do *s++=ch; while(!isempty(ch=getchar()));}
}using Fread::g; using Fread::gs;
const int N=,M=1E+;
int n,m; char s1[N],s2[N];
int f[][N],h[][N];
signed main() {
gs(s1+),gs(s2+); R l1=strlen(s1+)-,l2=strlen(s2+)-;
R c=; for(R i=;i<=l2;++i) h[c][i]=;
for(R i=;i<=l1;++i) {
c^=; h[c][]=;
for(R j=;j<=l2;++j) {
h[c][j]=;
f[c][j]=max(f[c^][j],f[c][j-]);
if(s1[i]==s2[j]) f[c][j]=max(f[c][j],f[c^][j-]+);
if(f[c][j]==f[c^][j]) h[c][j]+=h[c^][j];
if(f[c][j]==f[c][j-]) h[c][j]+=h[c][j-];
if(s1[i]==s2[j]&&f[c][j]==f[c^][j-]+) h[c][j]+=h[c^][j-];
if(s1[i]!=s2[j]&&f[c][j]==f[c^][j-]) h[c][j]-=h[c^][j-];
h[c][j]=(h[c][j]+M)%M;
}
} printf("%d\n%d\n",f[c][l2],h[c][l2]);
}
2019.07.11
Luogu P2516 [HAOI2010]最长公共子序列 DP的更多相关文章
- luogu P2516 [HAOI2010]最长公共子序列
传送门 首先那个\(O(n^2)\)的dp都会吧,不会自己找博客或者问别人,或是去做模板题(误) 对以下内容不理解的,强势推荐flash的博客 我们除了原来记录最长上升子序列的\(f_{i,j}\), ...
- 2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组)
2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组) https://www.luogu.com.cn/problem/P2516 题意: 给定字符串 \(S\) ...
- 【BZOJ2423】[HAOI2010]最长公共子序列 DP
[BZOJ2423][HAOI2010]最长公共子序列 Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字 ...
- 洛谷P2516 [HAOI2010]最长公共子序列(LCS,最短路)
洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? ...
- 洛谷 P2516 [HAOI2010]最长公共子序列
题目传送门 解题思路: 第一问要求最长公共子序列,直接套模板就好了. 第二问要求数量,ans[i][j]表示第一个字符串前i个字符,第二个字符串前j个字符的最长公共子序列的数量 如果f[i][j]是由 ...
- P2516 [HAOI2010]最长公共子序列 题解(LCS)
题目链接 最长公共子序列 解题思路 第一思路: 1.用\(length[i][j]\)表示\(a\)串的前\(i\)个字符与\(b\)串的前\(j\)个字符重叠的最长子串长度 2.用\(num[i][ ...
- 洛谷P2516 [HAOI2010]最长公共子序列
题目描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X="x0,x1,-,xm-1",序列Y=& ...
- P2516 [HAOI2010]最长公共子序列
传送门 看到数据范围,显然 $n^2$ 的 $dp$... 设 $f[i][j]$ 表示 $A$ 串考虑了前 $i$ 位,$B$ 串考虑了前 $j$ 位,最优情况下的方案数 但是好像没法判断转移来的是 ...
- [BZOJ2423][HAOI2010]最长公共子序列
[BZOJ2423][HAOI2010]最长公共子序列 试题描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x ...
随机推荐
- 【AtCoder】AGC034
AGC034 刷了那么久AtCoder我发现自己还是只会ABCE(手动再见 A - Kenken Race 大意是一个横列,每个点可以跳一步或者跳两步,每个格子是空地或者石头,要求每一步不能走到石头或 ...
- 【AtCoder】ARC061
ARC061 C - たくさんの数式 / Many Formulas 这个其实\(10^5\)也能做.. 就是\(dp[i]\)表示到第i位的方案数,\(sum[i]\)表示延伸到第i位之前的所有方案 ...
- C# DataTable映射成Entity
using System; using System.Collections.Generic; using System.ComponentModel.DataAnnotations.Schema; ...
- Windows32位或64位下载安装配置Scala
[学习笔记] Windows 32位或64位下载安装配置Scala: 1)下载地址:http://www.scala-lang.org/download/,看我的spark那节,要求scala是2.1 ...
- 怎样获取所有的script节点
1. 使用document.scripts; document.scripts instanceof HTMLCollection; // true 2. 使用 document.getElement ...
- Jmeter4.0---- 测试数据说明(17)
1.说明 jmeter工具对于请求的测试结果,有多种形式展现,但是数据比较难懂,现在针对不同的展现做具体的说明. 2.监听器 (一)图形结果 (1)样本数目:总共发到服务器的请求数 (2)最新样本:服 ...
- STM32-移植FATFS的NANDFLASH驱动
一,建立工程FATFS源码 1,在http://elm-chan.org/fsw/ff/00index_e.html上下载ff007c.zip,并把ff007c.zip里面的 src文件夹复制到D:\ ...
- linux - 卸载python
2019年10月15日12:05:42 [root@spider1 bin]# rpm -qa|grep python|xargs rpm -ev --allmatches --nodeps ##强制 ...
- 忘记root密码,修改方法
Linux的root密码修改不像Windows的密码修改找回,Windows的登录密码忘记需要介入工具进行解决.CentOS6和CentOS7的密码方法也是不一样的,具体如下: 首先是CentOS 6 ...
- 转载:Java:字节流和字符流(输入流和输出流)
本文内容: 什么是流 字节流 字符流 首发日期:2018-07-24 什么是流 流是个抽象的概念,是对输入输出设备的抽象,输入流可以看作一个输入通道,输出流可以看作一个输出通道. 输入流是相对程序而言 ...