题面

题目传送门

分析

定义f(i)f(i)f(i)为iii点不被点亮的概率,p(i)p(i)p(i)为iii自己被点亮的概率,p(i,j)p(i,j)p(i,j)表示i−ji-ji−j

这条边联通的概率,有f(i)=(1−p(i))∗∏i−j(  1−p(i,j)∗(1−f(j))  )\large f(i)=(1-p(i))*\prod_{i-j}(\ \ 1-p(i,j)*(1-f(j))\ \ )f(i)=(1−p(i))∗i−j∏​(  1−p(i,j)∗(1−f(j))  )

可以看出,对于一个点iii,所有于它相连的点对它的影响是独立的,那么我们首先以111为根,只考虑儿子的影响做一次树形DPDPDP。然后再进行第二次DPDPDP,只考虑父亲的影响,具体做法只需要将父亲的f(fa)f(fa)f(fa)除以iii带来的影响就得到fafafa对iii的影响。见代码

CODE

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 500005;
int n, fir[MAXN], cnt;
double p[MAXN];
struct edge {
int to, nxt;
double p;
}e[MAXN<<1];
inline void add(int u, int v, double wt) {
e[++cnt] = (edge){v, fir[u], wt}; fir[u] = cnt;
e[++cnt] = (edge){u, fir[v], wt}; fir[v] = cnt;
}
double dp[MAXN];
inline void dfs1(int u, int ff) {
dp[u] = 1-p[u];
for(int i = fir[u], v; i; i = e[i].nxt)
if((v=e[i].to) != ff) dfs1(v, u), dp[u] *= 1-(1-dp[v])*e[i].p;
}
inline void dfs2(int u, int ff) {
for(int i = fir[u], v; i; i = e[i].nxt) {
if((v=e[i].to) != ff) {
double tmp = 1 - (dp[u] ? dp[u]/(1-(1-dp[v])*e[i].p) : 0); //为了不除0
dp[v] *= 1 - tmp*e[i].p;
dfs2(v, u);
}
}
}
int main () {
scanf("%d", &n);
for(int i = 1, x, y, z; i < n; ++i)
scanf("%d%d%d", &x, &y, &z), add(x, y, (double)z/100);
for(int i = 1, x; i <= n; ++i)
scanf("%d", &x), p[i] = (double)x/100;
dfs1(1, 0);
dfs2(1, 0);
double ans = 0;
for(int i = 1; i <= n; ++i)
ans += 1-dp[i];
printf("%.6f\n", ans);
}

关于在第二次dfsdfsdfs时的除法可能会除以零,是这样考虑的

  • 若分母出现000,则说明dp[u]dp[u]dp[u]也一定是000,因为dp[u]dp[u]dp[u]在第一次dfsdfsdfs时本来就乘上了分母。那么此时tmp=1tmp=1tmp=1,也就是代表父亲一定会被点亮。
  • 所以就判断一下dp[u]dp[u]dp[u]是否为000,再做除法就行了。

EOF\Large EOFEOF

BZOJ 3566 概率充电器(树形概率DP)的更多相关文章

  1. BZOJ3566: [SHOI2014]概率充电器 树形+概率dp

    3566: [SHOI2014]概率充电器 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1888  Solved: 857[Submit][Stat ...

  2. 【bzoj3566】[SHOI2014]概率充电器 树形概率dp

    题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的 ...

  3. BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP

    BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技 ...

  4. BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]

    3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...

  5. 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

  6. BZOJ 3566: [SHOI2014]概率充电器( 树形dp )

    通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...

  7. BZOJ3566 [SHOI2014]概率充电器 (树形DP&概率DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

  8. luogu P4284 [SHOI2014]概率充电器 期望 概率 树形dp

    LINK:概率充电器 大概是一个比较水的题目 不过有一些坑点. 根据期望的线性性 可以直接计算每个元件的期望 累和即为答案. 考虑统计每一个元件的概率的话 那么对其有贡献就是儿子 父亲 以及自己. 自 ...

  9. BZOJ3566:[SHOI2014]概率充电器(树形DP,概率期望)

    Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器, ...

随机推荐

  1. [转帖]删除一张大表时为什么undo占用空间接近原表两倍?

    删除一张大表时为什么undo占用空间接近原表两倍? https://www.toutiao.com/i6736735016492990983/ 原创 波波说运维 2019-09-22 00:01:00 ...

  2. WCF-初识DEMO

    类库 System.ServiceModle WCF类库 契约IUser1,实现User1 [ServiceContract] public interface IUser1 { [Operation ...

  3. Python 【爬虫】

    爬虫的工作原理 首先,爬虫可以模拟浏览器去向服务器发出请求: 其次,等服务器响应后,爬虫程序还可以代替浏览器帮我们解析数据: 接着,爬虫可以根据我们设定的规则批量提取相关数据,而不需要我们去手动提取: ...

  4. Python开发【第三章】:编码转换

    一.字符编码与转码 1.bytes和str 之前有学过关于bytes和str之间的转换,详细资料->bytes和str(第四字符串) 2.为什么要进行编码和转码 由于每个国家电脑的字符编码格式不 ...

  5. 【C#】课堂知识点#1

    标准数字格式字符串 https://docs.microsoft.com/zh-cn/dotnet/standard/base-types/standard-numeric-format-string ...

  6. WinRAR 去广告的姿势

    一直在使用WinRAR解压文件,感觉非常的好用,可是现在WinRAR添加了广告,每次打开压缩包都会弹出广告,有时候甚至在解压的时候弹出来,而每次弹出广告都会卡顿一下,忍了很长时间今天实在是受够了,准备 ...

  7. 移动构造函数应用最多的地方就是STL中(原文详解移动构造函数)

    移动构造函数应用最多的地方就是STL中 给出一个代码,大家自行验证使用move和不适用move的区别吧 #include <iostream> #include <cstring&g ...

  8. C#类型转换工具类

    using System; namespace Com.AppCode.Extend { public static partial class Ext { #region 数值转换 /// < ...

  9. (错误)Lucene工具Luck启动错误

    启动luke命令行下图错误 错误原因:luke版本和lucene版本不匹配,lucene5.3.0版本必须用luke5.3.0版本才能打开索引. 解决方法:更新luke版本即可. luke 所有版本下 ...

  10. (六)Redis之数据结构之sorted-set

    一.常用方法 Sorted-Set和Set的区别 Sorted-Set中的成员在集合中的位置是有序的 添加元素 获得元素 删除元素 范围查询 1和2和3和4 添加/获得/删除元素/范围查询 packa ...