AVL平衡树(非指针实现)
看了网上三四篇博客,学习了AVL树维护平衡的方式。但感觉他们给出的代码都有一点瑕疵或者遗漏,懂得了思想之后,花了一些时间把他们几篇的长处结合起来,没有使用指针,实现了一下。每个小逻辑功能都抽象成了函数,应该比较好理解,代码逻辑看起来也比较清晰。下面给出主要的功能插入和删除。至于其他一些没有动到树结构的操作,如查询,求前驱后继等,同其他BST,没有什么特别。
这里顺带一提,下面的代码中,没有维护子树size,如果要求第K小或者名次,可以在upd函数等处添加有关size的维护,之后便可以支持相关查询了。
#include<iostream>
#include<algorithm>
#define de(x) cout<<#x<<" = "<<x<<endl
using namespace std;
const int maxn=1e5+10;
struct AVL
{
int key,h,lc,rc;
}tree[maxn];
int id,root;
inline int newNode(int k,int l,int r)
{
tree[++id].key=k;
tree[id].lc=l;
tree[id].rc=r;
tree[id].h=0;
return id;
}
inline int height(int id)
{
return id ? tree[id].h : 0;
}
inline void upd(int id)
{
if (!id)
return;
int lh=height(tree[id].lc), rh=height(tree[id].rc);
tree[id].h=max(lh, rh)+1;
}
inline int rightRotate(int id)
{
int lc=tree[id].lc;
tree[id].lc=tree[lc].rc;
tree[lc].rc=id;
upd(id);
upd(lc);
return lc;
}
inline int leftRotate(int id)
{
int rc=tree[id].rc;
tree[id].rc=tree[rc].lc;
tree[rc].lc=id;
upd(id);
upd(rc);
return rc;
}
inline int lrRotate(int id)
{
tree[id].lc=leftRotate(tree[id].lc);
return rightRotate(id);
}
inline int rlRotate(int id)
{
tree[id].rc=rightRotate(tree[id].rc);
return leftRotate(id);
}
inline int balance(int id)
{
if (height(tree[id].lc)-height(tree[id].rc) > 1)
{
int lc=tree[id].lc;
if (height(tree[lc].lc) > height(tree[lc].rc))
return rightRotate(id);
else
return lrRotate(id);
}
else if (height(tree[id].rc)-height(tree[id].lc) > 1)
{
int rc=tree[id].rc;
if (height(tree[rc].lc) < height(tree[rc].rc))
return leftRotate(id);
else
return rlRotate(id);
}
return id;
}
int getMax(int id)
{
if (!id)
return 0;
while (tree[id].rc)
id=tree[id].rc;
return id;
}
int getMin(int id)
{
if (!id)
return 0;
while (tree[id].lc)
id=tree[id].lc;
return id;
}
void insert(int& rt, int v)
{
if (!rt)
rt=newNode(v,0,0);
else if (v < tree[rt].key)
insert(tree[rt].lc, v);
else if (v > tree[rt].key)
insert(tree[rt].rc, v);
rt=balance(rt);
upd(rt);
return;
}
void del(int& rt, int v)
{
if (!rt)
return;
if (v < tree[rt].key)
del(tree[rt].lc, v);
else if (v > tree[rt].key)
del(tree[rt].rc, v);
else
{
if (tree[rt].lc&&tree[rt].rc)
{
if (height(tree[rt].lc) > height(tree[rt].rc))
{
int maxId=getMax(tree[rt].lc);
tree[rt].key=tree[maxId].key;
del(tree[rt].lc, tree[maxId].key);
}
else
{
int minId=getMin(tree[rt].rc);
tree[rt].key=tree[minId].key;
del(tree[rt].rc, tree[minId].key);
}
}
else
rt=tree[rt].lc ? tree[rt].lc : tree[rt].rc;
}
rt=balance(rt);
upd(rt);
}
AVL平衡树(非指针实现)的更多相关文章
- 实现Avl平衡树
实现Avl平衡树 一.介绍 AVL树是一种自平衡的二叉搜索树,它由Adelson-Velskii和 Landis于1962年发表在论文<An algorithm for the organi ...
- BZOJ3223文艺平衡树——非旋转treap
此为平衡树系列第二道:文艺平衡树您需要写一种数据结构,来维护一个有序数列,其中需要提供以下操作: 翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区间是[2,4]的话,结果是5 2 3 4 1 ...
- Python与数据结构[3] -> 树/Tree[2] -> AVL 平衡树和树旋转的 Python 实现
AVL 平衡树和树旋转 目录 AVL平衡二叉树 树旋转 代码实现 1 AVL平衡二叉树 AVL(Adelson-Velskii & Landis)树是一种带有平衡条件的二叉树,一棵AVL树其实 ...
- 数据结构学习-AVL平衡树
环境:C++ 11 + win10 IDE:Clion 2018.3 AVL平衡树是在BST二叉查找树的基础上添加了平衡机制. 我们把平衡的BST认为是任一节点的左子树和右子树的高度差为-1,0,1中 ...
- AVL平衡树的插入例程
/* **AVL平衡树插入例程 **2014-5-30 11:44:50 */ avlTree insert(elementType X, avlTree T){ if(T == NULL){ T = ...
- 【转】 史上最详尽的平衡树(splay)讲解与模板(非指针版spaly)
ORZ原创Clove学姐: 变量声明:f[i]表示i的父结点,ch[i][0]表示i的左儿子,ch[i][1]表示i的右儿子,key[i]表示i的关键字(即结点i代表的那个数字),cnt[i]表示i结 ...
- AVL 平衡树
AVL是一种平衡二叉树,它通过对二叉搜索树中的节点进行旋转使得二叉搜索树达到平衡.AVL在所有的平衡二叉搜索树中具有最高的平衡性. 定义 平衡二叉树或者为空树或者为满足如下性质的二叉搜索树: 左右子树 ...
- 伸展树Splay【非指针版】
·伸展树有以下基本操作(基于一道强大模板题:codevs维护队列): a[]读入的数组;id[]表示当前数组中的元素在树中节点的临时标号;fa[]当前节点的父节点的编号;c[][]类似于Trie,就是 ...
- BZOJ3224普通平衡树——非旋转treap
题目: 此为平衡树系列第一道:普通平衡树您需要写一种数据结构,来维护一些数,其中需要提供以下操作:1. 插入x数2. 删除x数(若有多个相同的数,因只删除一个)3. 查询x数的排名(若有多个相同的数, ...
随机推荐
- String的equals和hashCode方法
对于判断对象是否相等,肯定需要重写它的equals和hashCode方法.不然使用默认的方法只会比较地址,因此会出现错误. 以String类为例,且看它的equals方法 public boolean ...
- 沿路径动画(Animation Along a Path)
Silverlight 提供一个好的动画基础,但缺少一种方便的方法沿任意几何路径对象进行动画处理.在Windows Presentation Foundation中提供了动画处理类DoubleAnim ...
- 完全卸载RabbitMQ和Erlang
要从计算机中完全卸载RabbitMQ和Erlang,请执行以下操作:(1)打开Windows控制面板,双击“程序和功能”. (2)在当前安装的程序列表中,右键单击RabbitMQ Server,然后单 ...
- 电脑无法上网,DNS出现fec0:0:0:ffff::1%1问题
具体描述:qq,微信可用网,但其他不能用. 一.win+r 输入cmd 打开命令行:ipconfig /all 查看DNS 二.打开文本编辑器,输入如下文本: @Echo onpushd\window ...
- sipp如何避免dead call
uac 和 uas 都加上 -deadcall_wait 0
- 抽奖JQ
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8 ...
- jumpserver跳板机docker安装小小趟坑
最近日常运维的时候发现每次登陆服务器都要打开终端目录连接对应的服务器,闲暇的时候还好,运维任务很重的时候才发现这样的玩法很傻,浪费时间且一点儿都跟不上潮流,然后打开githup开始搞起来.docker ...
- 玩转springcloud(三):服务的提供者与调用者(注册于发现)
一.简介 上文我们实践了cloud的注册中心的单服务于多节点的搭建,房子造好了得有人来住不是,这篇我们实践下服务提供者于调用者的案例,也就是服务端和客户端的调用. 本文会设计三个module:注册中心 ...
- 【转】char data[0]用法总结
@2019-07-31 struct MyData { int nLen; ]; }; 开始没有理解红色部分的内容,上网搜索下,发现用处很大,记录下来. 在结构中,data是一个数组名:但该数组没有元 ...
- 关于单例模式getInstance()的使用
/** * 对象的实例化方法,也是比较多的,最常用的方法是直接使用new,而这是最普通的,如果要考虑到其它的需要,如单实例模式,层次间调用等等. * 直接使用new就不可以实现好的设计好,这时候需要 ...