Treap树

  核心是 利用随机数的二叉排序树的各种操作复杂度平均为O(lgn)

Treap模板:

#include <cstdio>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <cmath>
#include <utility>
#include <vector>
#include <queue>
#include <map>
#include <set>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)>(y)?(y):(x))
#define INF 0x3f3f3f3f
#define MAXN 100005 using namespace std; int cnt=,rt=; //节点编号从1开始 struct Tree
{
int key, size, pri, son[]; //保证父亲的pri大于儿子的pri
void set(int x, int y, int z)
{
key=x;
pri=y;
size=z;
son[]=son[]=;
}
}T[MAXN]; void rotate(int p, int &x)
{
int y=T[x].son[!p];
T[x].size=T[x].size-T[y].size+T[T[y].son[p]].size;
T[x].son[!p]=T[y].son[p];
T[y].size=T[y].size-T[T[y].son[p]].size+T[x].size;
T[y].son[p]=x;
x=y;
} void ins(int key, int &x)
{
if(x == )
T[x = cnt++].set(key, rand(), );
else
{
T[x].size++;
int p=key < T[x].key;
ins(key, T[x].son[!p]);
if(T[x].pri < T[T[x].son[!p]].pri)
rotate(p, x);
}
} void del(int key, int &x) //删除值为key的节点
{
if(T[x].key == key)
{
if(T[x].son[] && T[x].son[])
{
int p=T[T[x].son[]].pri > T[T[x].son[]].pri;
rotate(p, x);
del(key, T[x].son[p]);
}
else
{
if(!T[x].son[])
x=T[x].son[];
else
x=T[x].son[];
}
}
else
{
T[x].size--;
int p=T[x].key > key;
del(key, T[x].son[!p]);
}
} int find(int p, int &x) //找出第p小的节点的编号
{
if(p == T[T[x].son[]].size+)
return x;
if(p > T[T[x].son[]].size+)
find(p-T[T[x].son[]].size-, T[x].son[]);
else
find(p, T[x].son[]);
} int find_NoLarger(int key, int &x) //找出值小于等于key的节点个数
{
if(x == )
return ;
if(T[x].key <= key)
return T[T[x].son[]].size++find_NoLarger(key, T[x].son[]);
else
return find_NoLarger(key, T[x].son[]);
}

相关题解:

POJ 3481 treap

POJ 1442 treap

POJ 2352 treap

Splay Tree(伸展树)

  核心就是 过程Splay(x, y),即将x节点转移到y节点的子节点上面(其中y是x的祖先)。

  利用其中双旋的优势能够保证查询复杂度均摊为O(lgn)

  一开始理解有些困难,其实实际上不做深入的理解就是,双旋的过程就是一个建立相对平衡的二叉树的一个过程。

  》对于二叉树,最极端的情况就是线性插入,使得整棵二叉树退化为一条链。比如你查询链的最后一个节点,之后再次查询第一个节点。

    1)若只是单旋通过Splay(x, 0)将最后一个节点移动到根节点,需要O(n)复杂度,而查询第一个节点时又需要O(n)复杂度,来来往往就退化成一条链了。

    2)若是双旋Splay(x, 0)将最后一个节点移动到根节点上时,移动过程中建立起了相对平衡的二叉树,需要O(n),也就是查询第一个节点时,大概是需要O(lgn)复杂度。这就降低了复杂度。可以证明,总的每个操作的均摊复杂度是O(lgn)。

    具体证明可以参见 杨思雨《伸展树的基本操作与应用》

I 用于维护单调队列:(以key为维护对象保证单调)

常用版:(支持相同值)

Struct Tree{

  int key, size, fa, son[2];

}

void PushUp(int x);

void Rotate(int x, int p); //0左旋 1右旋

void Splay(int x, int To) //将x节点插入到To的子节点中

int find(int key) //返回值为key的节点 若无返回0 若有将其转移到根处

int prev() //返回比根值小的最大值 若无返回0 若有将其转移到根处

int succ() //返回比根值大的最小值 若无返回0 若有将其转移到根处

void Insert(int key) //插入key 并且将该节点转移到根处

void Delete(int key) //删除值为key的节点 若有重点只删其中一个 x的前驱移动到根处

int GetPth(int p) //获得第p小的节点 并将其转移到根处

int GetRank(int key) //获得值<=key的节点个数 并将其转移到根处 若<key只需将<=换为<

模板:
int cnt=, rt=;

struct Tree
{
int key, size, fa, son[];
void set(int _key, int _size, int _fa)
{
key=_key;
size=_size;
fa=_fa;
son[]=son[]=;
}
}T[MAXN]; inline void PushUp(int x)
{
T[x].size=T[T[x].son[]].size+T[T[x].son[]].size+;
} inline void Rotate(int x, int p) //0左旋 1右旋
{
int y=T[x].fa;
T[y].son[!p]=T[x].son[p];
T[T[x].son[p]].fa=y;
T[x].fa=T[y].fa;
if(T[x].fa)
T[T[x].fa].son[T[T[x].fa].son[] == y]=x;
T[x].son[p]=y;
T[y].fa=x;
PushUp(y);
PushUp(x);
} void Splay(int x, int To) //将x节点插入到To的子节点中
{
while(T[x].fa != To)
{
if(T[T[x].fa].fa == To)
Rotate(x, T[T[x].fa].son[] == x);
else
{
int y=T[x].fa, z=T[y].fa;
int p=(T[z].son[] == y);
if(T[y].son[p] == x)
Rotate(x, !p), Rotate(x, p); //之字旋
else
Rotate(y, p), Rotate(x, p); //一字旋
}
}
if(To == ) rt=x;
} int find(int key) //返回值为key的节点 若无返回0 若有将其转移到根处
{
int x=rt;
while(x && T[x].key != key)
x=T[x].son[key > T[x].key];
if(x) Splay(x, );
return x;
} int prev() //返回比根值小的最大值 若无返回0 若有将其转移到根处
{
int x=T[rt].son[];
if(!x) return ;
while(T[x].son[])
x=T[x].son[];
Splay(x, );
return x;
} int succ() //返回比根值大的最小值 若无返回0 若有将其转移到根处
{
int x=T[rt].son[];
if(!x) return ;
while(T[x].son[])
x=T[x].son[];
Splay(x, );
return x;
} void Insert(int key) //插入key 并且将该节点转移到根处
{
if(!rt)
T[rt = cnt++].set(key, , );
else
{
int x=rt, y=;
while(x)
{
y=x;
x=T[x].son[key > T[x].key];
}
T[x = cnt++].set(key, , y);
T[y].son[key > T[y].key]=x;
Splay(x, );
}
} void Delete(int key) //删除值为key的节点 若有重点只删其中一个 x的前驱移动到根处
{
int x=find(key);
if(!x) return;
int y=T[x].son[];
while(T[y].son[])
y=T[y].son[];
int z=T[x].son[];
while(T[z].son[])
z=T[z].son[];
if(!y && !z)
{
rt=;
return;
}
if(!y)
{
Splay(z, );
T[z].son[]=;
PushUp(z);
return;
}
if(!z)
{
Splay(y, );
T[y].son[]=;
PushUp(y);
return;
}
Splay(y, );
Splay(z, y);
T[z].son[]=;
PushUp(z);
PushUp(y);
} int GetPth(int p) //获得第p小的节点 并将其转移到根处
{
if(!rt) return ;
int x=rt, ret=;
while(x)
{
if(p == T[T[x].son[]].size+)
break;
if(p>T[T[x].son[]].size+)
{
p-=T[T[x].son[]].size+;
x=T[x].son[];
}
else
x=T[x].son[];
}
Splay(x, );
return x;
} int GetRank(int key) //获得值<=key的节点个数 并将其转移到根处 若<key只需将<=换为<
{
if(!rt) return ;
int x=rt, ret=, y;
while(x)
{
y=x;
if(T[x].key <= key)
{
ret+=T[T[x].son[]].size+;
x=T[x].son[];
}
else
x=T[x].son[];
}
Splay(y, );
return ret;
}

完全版:(支持相同值,支持区间删除,支持懒惰标记)

Struct Tree{

  int key, num, size, fa, son[2];

}

void PushUp(int x);

void PushDown(int x);

int Newnode(int key, int fa); //新建一个节点并返回

void Rotate(int x, int p); //0左旋 1右旋

void Splay(int x, int To); //将x节点移动到To的子节点中

int GetPth(int p, int To); //返回第p小的节点 并移动到To的子节点中

int Find(int key); //返回值为key的节点 若无返回0 若有将其转移到根处

int Prev(); //返回根节点的前驱

int Succ(); //返回根结点的后继

void Insert(int key); //插入key值

void Delete(int key); //删除值为key的节点

int GetRank(int key); //获得值<=key的节点个数

void Delete(int l, int r); //删除值在[l, r]中的节点

模板:
int cnt, rt;
int Add[MAXN]; struct Tree{
int key, num, size, fa, son[];
}T[MAXN]; inline void PushUp(int x)
{
T[x].size=T[T[x].son[]].size+T[T[x].son[]].size+T[x].num;
} inline void PushDown(int x)
{
if(Add[x])
{
if(T[x].son[])
{
T[T[x].son[]].key+=Add[x];
Add[T[x].son[]]+=Add[x];
}
if(T[x].son[])
{
T[T[x].son[]].key+=Add[x];
Add[T[x].son[]]+=Add[x];
}
Add[x]=;
}
} inline int Newnode(int key, int fa) //新建一个节点并返回
{
++cnt;
T[cnt].key=key;
T[cnt].num=T[cnt].size=;
T[cnt].fa=fa;
T[cnt].son[]=T[cnt].son[]=;
return cnt;
} inline void Rotate(int x, int p) //0左旋 1右旋
{
int y=T[x].fa;
PushDown(y);
PushDown(x);
T[y].son[!p]=T[x].son[p];
T[T[x].son[p]].fa=y;
T[x].fa=T[y].fa;
if(T[x].fa)
T[T[x].fa].son[T[T[x].fa].son[] == y]=x;
T[x].son[p]=y;
T[y].fa=x;
PushUp(y);
PushUp(x);
} void Splay(int x, int To) //将x节点移动到To的子节点中
{
while(T[x].fa != To)
{
if(T[T[x].fa].fa == To)
Rotate(x, T[T[x].fa].son[] == x);
else
{
int y=T[x].fa, z=T[y].fa;
int p=(T[z].son[] == y);
if(T[y].son[p] == x)
Rotate(x, !p), Rotate(x, p); //之字旋
else
Rotate(y, p), Rotate(x, p); //一字旋
}
}
if(To == ) rt=x;
} int GetPth(int p, int To) //返回第p小的节点 并移动到To的子节点中
{
if(!rt || p > T[rt].size) return ;
int x=rt;
while(x)
{
PushDown(x);
if(p >= T[T[x].son[]].size+ && p <= T[T[x].son[]].size+T[x].num)
break;
if(p > T[T[x].son[]].size+T[x].num)
{
p-=T[T[x].son[]].size+T[x].num;
x=T[x].son[];
}
else
x=T[x].son[];
}
Splay(x, );
return x;
} int Find(int key) //返回值为key的节点 若无返回0 若有将其转移到根处
{
if(!rt) return ;
int x=rt;
while(x)
{
PushDown(x);
if(T[x].key == key) break;
x=T[x].son[key > T[x].key];
}
if(x) Splay(x, );
return x;
} int Prev() //返回根节点的前驱 非重点
{
if(!rt || !T[rt].son[]) return ;
int x=T[rt].son[];
while(T[x].son[])
{
PushDown(x);
x=T[x].son[];
}
Splay(x, );
return x;
} int Succ() //返回根结点的后继 非重点
{
if(!rt || !T[rt].son[]) return ;
int x=T[rt].son[];
while(T[x].son[])
{
PushDown(x);
x=T[x].son[];
}
Splay(x, );
return x;
} void Insert(int key) //插入key值
{
if(!rt)
rt=Newnode(key, );
else
{
int x=rt, y=;
while(x)
{
PushDown(x);
y=x;
if(T[x].key == key)
{
T[x].num++;
T[x].size++;
break;
}
T[x].size++;
x=T[x].son[key > T[x].key];
}
if(!x)
x=T[y].son[key > T[y].key]=Newnode(key, y);
Splay(x, );
}
} void Delete(int key) //删除值为key的节点1个
{
int x=Find(key);
if(!x) return;
if(T[x].num>)
{
T[x].num--;
PushUp(x);
return;
}
int y=T[x].son[];
while(T[y].son[])
y=T[y].son[];
int z=T[x].son[];
while(T[z].son[])
z=T[z].son[];
if(!y && !z)
{
rt=;
return;
}
if(!y)
{
Splay(z, );
T[z].son[]=;
PushUp(z);
return;
}
if(!z)
{
Splay(y, );
T[y].son[]=;
PushUp(y);
return;
}
Splay(y, );
Splay(z, y);
T[z].son[]=;
PushUp(z);
PushUp(y);
} int GetRank(int key) //获得值<=key的节点个数
{
if(!Find(key))
{
Insert(key);
int tmp=T[T[rt].son[]].size;
Delete(key);
return tmp;
}
else
return T[T[rt].son[]].size+T[rt].num;
} void Delete(int l, int r) //删除值在[l, r]中的所有节点 l!=r
{
if(!Find(l)) Insert(l);
int p=Prev();
if(!Find(r)) Insert(r);
int q=Succ();
if(!p && !q)
{
rt=;
return;
}
if(!p)
{
T[rt].son[]=;
PushUp(rt);
return;
}
if(!q)
{
Splay(p, );
T[rt].son[]=;
PushUp(rt);
return;
}
Splay(p, q);
T[p].son[]=;
PushUp(p);
PushUp(q);
}

(经测NOI2004郁闷的出纳员 POJ3481 POJ2352 POJ1442)

速度相对来说都还不错,POJ这些都3~500ms,郁闷的出纳员900多ms

相关题解:

HNOI 2002 营业额统计

POJ 3481 splay

POJ 2352 splay

POJ 1442 splay

NOI2004 郁闷的出纳员

II 用于维护序列:(以序列下标为对象维护,相当于对区间操作)(能够完成线段树的操作及其不能完成的操作)

Struct Tree{

  int key, sum, size, fa, son[2];

}

支持操作:

void PushUp(int x);

void PushDown(int x);

int MakeTree(int l, int r, int a[]); //新建一个子树返回根节点

void Rotate(int x, int p); //0左旋 1右旋

void Splay(int x, int To); //将x节点移动到To的子节点中

int Select(int p, int To); //将第p个数移动到To的子节点中 并返回该节点

int Find(int key); //返回值为key的节点 若无返回0 若有将其转移到根处

int Prev(); //返回根节点的前驱

int Succ(); //返回根结点的后继

void Insert(int p, int l, int r, int a[]) //将a[l .. r]的数插入到下标为p后面

void Delete(int l, int r); //删除区间[l, r]中的节点

int Query(int l, int r); //返回[l, r]的和

待补充。。

Size Balance Tree

  和上述两种二叉树比起来,SBT可能是最像真正平衡二叉树吧。

  SBT能够保证树的高度在lgn,这样对于插入,删除操作都能够准确保证时间复杂度在O(lgn)

  Maintain操作事实上理解起来也是挺简单的,至于证明参见CQF神牛的《SBT》

int cnt, rt;

struct Tree
{
int key, size, son[];
}T[MAXN]; inline void PushUp(int x)
{
T[x].size=T[T[x].son[]].size+T[T[x].son[]].size+;
} inline int Newnode(int key)
{
++cnt;
T[cnt].key=key;
T[cnt].size=;
T[cnt].son[]=T[cnt].son[]=;
return cnt;
} void Rotate(int p, int &x)
{
int y=T[x].son[!p];
T[x].son[!p]=T[y].son[p];
T[y].son[p]=x;
PushUp(x);
PushUp(y);
x=y;
} void Maintain(int &x, int p) //维护SBT的!p子树
{
if(T[T[T[x].son[p]].son[p]].size > T[T[x].son[!p]].size)
Rotate(!p, x);
else if(T[T[T[x].son[p]].son[!p]].size > T[T[x].son[!p]].size)
Rotate(p, T[x].son[p]), Rotate(!p, x);
else return;
Maintain(T[x].son[], );
Maintain(T[x].son[], );
Maintain(x, );
Maintain(x, );
} inline int Prev() //返回比根值小的最大值 若无返回0
{
int x=T[rt].son[];
if(!x) return ;
while(T[x].son[])
x=T[x].son[];
return x;
} inline int Succ() //返回比根值大的最小值 若无返回0
{
int x=T[rt].son[];
if(!x) return ;
while(T[x].son[])
x=T[x].son[];
return x;
} void Insert(int key, int &x)
{
if(!x) x=Newnode(key);
else
{
T[x].size++;
Insert(key, T[x].son[key > T[x].key]);
Maintain(x, key > T[x].key);
}
} bool Delete(int key, int &x) //删除值为key的节点 key可以不存在
{
if(!x) return ;
if(T[x].key == key)
{
if(!T[x].son[])
{
x=T[x].son[];
return ;
}
if(!T[x].son[])
{
x=T[x].son[];
return ;
}
int y=Prev();
T[x].size--;
return Delete(T[x].key, T[x].son[]);
}
else
if(Delete(key, T[x].son[key > T[x].key]))
{
T[x].size--;
return ;
}
} int GetPth(int p, int &x) //返回第p小的节点
{
if(!x) return ;
if(p == T[T[x].son[]].size+)
return x;
if(p > T[T[x].son[]].size+)
return GetPth(p-T[T[x].son[]].size-, T[x].son[]);
else
return GetPth(p, T[x].son[]);
} int GetRank(int key, int &x) //找出值<=key的节点个数
{
if(!x) return ;
if(T[x].key <= key)
return T[T[x].son[]].size++GetRank(key, T[x].son[]);
else
return GetRank(key, T[x].son[]);
}

相关题解:

POJ 3481 SBT做法

上述题均为用于测试平衡树基本操作的题目。

提高题:(暂时未写)

[NOI2005]维修数列

[POJ3580]SuperMemo

[HNOI2004]宠物收养所

三大平衡树(Treap + Splay + SBT)总结+模板的更多相关文章

  1. 平衡树初阶——AVL平衡二叉查找树+三大平衡树(Treap + Splay + SBT)模板【超详解】

    平衡树初阶——AVL平衡二叉查找树 一.什么是二叉树 1. 什么是树. 计算机科学里面的树本质是一个树状图.树首先是一个有向无环图,由根节点指向子结点.但是不严格的说,我们也研究无向树.所谓无向树就是 ...

  2. 三大平衡树(Treap + Splay + SBT)总结+模板[转]

    Treap树 核心是 利用随机数的二叉排序树的各种操作复杂度平均为O(lgn) Treap模板: #include <cstdio> #include <cstring> #i ...

  3. 三大平衡树(Treap + Splay + SBT)总结+模板[转]

    Treap树 核心是 利用随机数的二叉排序树的各种操作复杂度平均为O(lgn) Treap模板: #include <cstdio> #include <cstring> #i ...

  4. BZOJ 3224 - 普通平衡树 - [Treap][Splay]

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3224 Description 您需要写一种数据结构(可参考题目标题),来维护一些数,其中 ...

  5. [洛谷P3369] 普通平衡树 Treap & Splay

    这个就是存一下板子...... 题目传送门 Treap的实现应该是比较正经的. 插入删除前驱后继排名什么的都是平衡树的基本操作. #include<cstdio> #include< ...

  6. luoguP3369[模板]普通平衡树(Treap/SBT) 题解

    链接一下题目:luoguP3369[模板]普通平衡树(Treap/SBT) 平衡树解析 #include<iostream> #include<cstdlib> #includ ...

  7. 平衡树Treap模板与原理

    这次我们来讲一讲Treap(splay以后再更) 平衡树是一种排序二叉树(或二叉搜索树),所以排序二叉树可以迅速地判断两个值的大小,当然操作肯定不止那么多(不然我们还学什么). 而平衡树在排序二叉树的 ...

  8. P3369 【模板】普通平衡树(splay)

    P3369 [模板]普通平衡树 就是不用treap splay板子,好好背吧TAT #include<iostream> #include<cstdio> #include&l ...

  9. 算法模板——平衡树Treap 2

    实现功能:同平衡树Treap 1(BZOJ3224 / tyvj1728) 这次的模板有了不少的改进,显然更加美观了,几乎每个部分都有了不少简化,尤其是删除部分,这个参照了hzwer神犇的写法,在此鸣 ...

随机推荐

  1. iOS 定位方式 iOSNsPredicateString 详解

    原文地址https://segmentfault.com/a/1190000010205649 前言 由于使用id.className.AccessibilityId定位方式较为简单,多数情况下,在同 ...

  2. java 定时器实现

    java工程中,不免遇到需要定时处理任务的需求,有如下两种方法: 1.使用java.util.TimerTask 2.使用Quartz 一.java.util.TimerTask Timer time ...

  3. java 并发——内置锁

    坚持学习,总会有一些不一样的东西. 一.由单例模式引入 引用一下百度百科的定义-- 线程安全是多线程编程时的计算机程序代码中的一个概念.在拥有共享数据的多条线程并行执行的程序中,线程安全的代码会通过同 ...

  4. es6函数模块-------初步学习

    初步学习: 函数参数允许尾逗号 function clownsEverywhere( param1, param2, //param2后面有逗号 ) { } 函数参数可以赋初值 利用解构赋值默认值结合 ...

  5. 145. Binary Tree Postorder Traversal(二叉树后序遍历)

    Given a binary tree, return the postorder traversal of its nodes' values. For example:Given binary t ...

  6. SQL学习笔记之SQL中INNER、LEFT、RIGHT JOIN的区别和用法详解

    0x00 建表准备 相信很多人在刚开始使用数据库的INNER JOIN.LEFT JOIN和RIGHT JOIN时,都不太能明确区分和正确使用这三种JOIN操作,本文通过一个简单的例子通俗易懂的讲解这 ...

  7. Web前端开发学习笔记(一)

    最近在复习Web前端的开发知识,于是就把大二上学期曾经学过的东西拿出来复习一遍,把自己在做曾经的作业时遇到有意义的点都记下来吧. Homework1:http://my.ss.sysu.edu.cn/ ...

  8. [Linux 002]——Linux的常用命令

    经过前面的学习,大概了解了计算机组成原理和操作系统的一些知识.尽管这些知识都是琐碎的,拼凑的,在以后的工作和学习中仍需进行深入的了解.但是这些预备知识对于准备跨入 Linux 大门的童鞋来说,应该是足 ...

  9. 20135302魏静静——linux课程第三周实验及总结

    linux课程第三周实验及总结 一.实验:跟踪分析Linux内核的启动过程 使用gdb跟踪调试内核从start_kernel到init进程启动 使用实验楼的虚拟机打开shell cd LinuxKer ...

  10. 组播的介绍以及CS模型实现

    1.组播介绍 组播组可以是永久的也可以是临时的.组播组地址中,有一部分由官方分配的,称为永久组播组. 永久组播组保持不变的是它的ip地址,组中的成员构成可以发生变化.永久组播组中成员的数量都可以是任意 ...