递归

	int find_kth(vector<int>& nums1, int begin1, int size1, vector<int>& nums2, int begin2, int size2, int k)
{
size1 = min(k, size1);//第k大最多只要前k个
size2 = min(k, size2);
if (k == 1)
{
return min(nums1[begin1], nums2[begin2]);
}
if (size1 == 1)
{
if (begin2 + k - 1 < nums2.size())
return min(max(nums1[begin1], nums2[begin2 + k - 2]), nums2[begin2 + k - 1]);
else
return max(nums1[begin1], nums2[begin2 + k - 2]);
}
if (size2 == 1)
{
if (begin1 + k - 1 < nums1.size())
return min(max(nums2[begin2], nums1[begin1 + k - 2]), nums1[begin1 + k - 1]);
else
return max(nums2[begin1], nums1[begin1 + k - 2]);
}
double s = k / static_cast<double>(size1 + size2);//对应的比例位置
int q = s*(size1)+begin1;/**/
int p = s*(size2)+begin2;/**/
if (static_cast<int>(s*(size1)) + static_cast<int>(s*(size2))> k - 1 && (q - begin1) && (p - begin2))
//调节使 k刚好落在p 或 k,p k有可能是第k大在下一轮仍保留
{
--p;
--q;
}
if (static_cast<int>(s*(size1)) + static_cast<int>(s*(size2))< k - 3 && (q - begin1) && (p - begin2))
//调节使 k刚好落在p 或 k
{
++p;
++q;
}
if (nums1[q] > nums2[p])
{
k = k - (p - begin2);
size1 = q - begin1 + 1;
size2 -= (p - begin2);
begin2 = p;
}
else
{
if (nums1[q] < nums2[p])
{
k = k - (q - begin1);
size1 -= (q - begin1);
begin1 = q;
size2 = p - begin2 + 1;
}
else
{
return nums1[q];
}
}
return find_kth(nums1, begin1, size1, nums2, begin2, size2, k);
}

  迭代

int find_kth(vector<int>& nums1, int begin1, int size1, vector<int>& nums2, int begin2, int size2, int k)
{
while (!(size2 == 1 || size1 == 1 || k == 1))
{
size1 = min(k, size1);//第k大最多只要前k个
size2 = min(k, size2);
double s = k / static_cast<double>(size1 + size2);//对应的比例位置
int q = s*(size1)+begin1;/**/
int p = s*(size2)+begin2;/**/
if (static_cast<int>(s*(size1)) + static_cast<int>(s*(size2)) > k - 1 && (q - begin1) && (p - begin2))
//调节使 k刚好落在p 或 k
{
--p;
--q;
}
if (static_cast<int>(s*(size1)) + static_cast<int>(s*(size2)) < k - 3 && (q - begin1) && (p - begin2))
//调节使 k刚好落在p 或 k p k可能为第k大下轮保留
{
++p;
++q;
}
if (nums1[q] > nums2[p])
{
k = k - (p - begin2);
size1 = q - begin1 + 1;
size2 -= (p - begin2);
begin2 = p;
}
else
{
if (nums1[q] < nums2[p])
{
k = k - (q - begin1);
size1 -= (q - begin1);
begin1 = q;
size2 = p - begin2 + 1;
}
else
{
return nums1[q];
}
}
}
if (k == 1)
{
return min(nums1[begin1], nums2[begin2]);
}
if (size1 == 1)
{
if (begin2 + k - 1 < nums2.size())
return min(max(nums1[begin1], nums2[begin2 + k - 2]), nums2[begin2 + k - 1]);
else
return max(nums1[begin1], nums2[begin2 + k - 2]);
}
if (size2 == 1)
{
if (begin1 + k - 1 < nums1.size())
return min(max(nums2[begin2], nums1[begin1 + k - 2]), nums1[begin1 + k - 1]);
else
return max(nums2[begin1], nums1[begin1 + k - 2]);
}
}

  

log(m+n)找第k大的更多相关文章

  1. 找第k大的数

    (找第k大的数) 给定一个长度为1,000,000的无序正整数序列,以及另一个数n(1<=n<=1000000),接下来以类似快速排序的方法找到序列中第n大的数(关于第n大的数:例如序列{ ...

  2. 快速排序算法的实现 && 随机生成区间里的数 && O(n)找第k小 && O(nlogk)找前k大

    思路:固定一个数,把这个数放到合法的位置,然后左边的数都是比它小,右边的数都是比它大 固定权值选的是第一个数,或者一个随机数 因为固定的是左端点,所以一开始需要在右端点开始,找一个小于权值的数,从左端 ...

  3. luogu_P1177 【模板】快速排序 (快排和找第k大的数)

    [算法] 选取pivot,然后每趟快排用双指针扫描(l,r)区间,交换左指针大于pivot的元素和右指针小于pivot的元素,将区间分成大于pivot和小于pivot的 [注意] 时间复杂度取决于pi ...

  4. 从一组数找第K大元素

    最近做面试题,经常与到一个问题,如何高效的从一组数中找到第K大的元素. 其实我们最容易想到的肯定是蛮力法. 1. 我们可以对这个乱序数组按照从大到小先行排序,然后取出前k大,总的时间复杂度为O(n*l ...

  5. O(n)线性时间找第K大,中位数

    运用快速排序的思想,可以达到线性时间找到一串数的第K大 #include<cstdio> #define F(i,a,b) for(int i=a;i<=b;i++) ],n; vo ...

  6. CSUOJ2078-查找第k大(读入挂)

    查找第k大 Submit Page Output 对于每组数据,输出第k大的数 Sample Input 1 6 2 1 2 3 4 5 6 Sample Output 5 Hint #include ...

  7. P1049 找第K大的数

    题目描述 给定一个无序正整数序列, 以及另一个数n (1<=n<=1000000), 然后以类似快速排序的方法找到序列中第n大的数(关于第n大的数:例如序列{1,2,3,4,5,6}中第3 ...

  8. HDU - 4006 The kth great number multiset应用(找第k大值)

    The kth great number Xiao Ming and Xiao Bao are playing a simple Numbers game. In a round Xiao Ming ...

  9. 快排找第k大模板

    int get_kth(int l,int r) { if (l==r) return a[r]; ]; while (i<j) { while (a[i]<mid) i++; while ...

随机推荐

  1. AnimatorController即动画控制器创建的BUG

    //-------------------------------------------------------------------------------------------------- ...

  2. Linux服务管理总结

    简介与分类 系统的运行级别 运行级别 含义 0 关机 1 单用户模式,可以想象为windows的安全模式,主要用于系统修复 2 不完全的命令行模式,不含NFS服务 3 完全的命令行模式,就是标准字符界 ...

  3. Ubuntu 15.04 开机无法进入图形界面,自动进入emergency mode解决方法

    原因:关机的时候没有正常退出,直接强制关机了... 解决: 就是在那个GIVE root password for maintenance (or type control-D to continue ...

  4. Android基础之sqlite 数据库简单操作

    尽管很简单,但是也存下来,以后直接粘过去就能用了. public class DBHelper extends SQLiteOpenHelper {      private static final ...

  5. 不要在遍历子结点时修改parent

    [不要在遍历子结点时修改parent] 在用for/foreach遍历子结点时,如果在这过程中有改变子结点的parent,会导致不可预料的结果.我所遇到的问题是,在此种情况下,并非所有的子结点都能遍历 ...

  6. Python_11-正则表达式

    目录: 1.1      引言 1.2      python 正则式概述及常用字符 1.2.1       元字符 1.2.2       用 "" 开始的特殊字符所表示的预定义 ...

  7. java-tip-Collections.synchronized系列生成的容器

    这个系列的容器,和Vector或者HashTable之流的差不多, 区别是: Vector和HashTable是在关键方法上加synchronized关键字 而 Collections.synchro ...

  8. 深入浅出iptables

    一. 防火墙是什么 1. 防火墙简述 防火墙是指设置在不同网络或网络安全域之间的一系列部件的组合,它能增强机构内部网络的安全性.它通过访问控制机制,确定哪些内部服务允许外部访问,以及允许哪些外部请求可 ...

  9. 关于fastjson的一些知识

    今天被问到了一些有关fastjson的知识,问了fastjson内部的实现机制,笔者只是用过fastjson这个包,还真没了解过它的机制等. 下去后搜索了一些有关fastjson的知识,希望能对自己和 ...

  10. Zedboard学习(三):PL下流水灯实验 标签: fpgazynqPL 2017-07-05 11:09 21人阅读 评论(0)

    zynq系列FPGA分为PS部分和PL部分. PL: 可编程逻辑 (Progarmmable Logic), 就是FPGA部分. PS: 处理系统 (Processing System) , 就是与F ...